ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvral2v GIF version

Theorem cbvral2v 2691
Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
Hypotheses
Ref Expression
cbvral2v.1 (𝑥 = 𝑧 → (𝜑𝜒))
cbvral2v.2 (𝑦 = 𝑤 → (𝜒𝜓))
Assertion
Ref Expression
cbvral2v (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑥,𝑦,𝐵   𝑦,𝑧,𝐵   𝑤,𝐵   𝜑,𝑧   𝜓,𝑦   𝜒,𝑥   𝜒,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤)   𝜓(𝑥,𝑧,𝑤)   𝜒(𝑦,𝑧)   𝐴(𝑦,𝑤)

Proof of Theorem cbvral2v
StepHypRef Expression
1 cbvral2v.1 . . . 4 (𝑥 = 𝑧 → (𝜑𝜒))
21ralbidv 2457 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 𝜒))
32cbvralv 2680 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑦𝐵 𝜒)
4 cbvral2v.2 . . . 4 (𝑦 = 𝑤 → (𝜒𝜓))
54cbvralv 2680 . . 3 (∀𝑦𝐵 𝜒 ↔ ∀𝑤𝐵 𝜓)
65ralbii 2463 . 2 (∀𝑧𝐴𝑦𝐵 𝜒 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
73, 6bitri 183 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑧𝐴𝑤𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440
This theorem is referenced by:  cbvral3v  2693  fununi  5235  fiintim  6866  isoti  6943  cauappcvgprlemlim  7564  caucvgprlemnkj  7569  caucvgprlemcl  7579  caucvgprprlemcbv  7590  axcaucvglemcau  7801  axpre-suploc  7805  seqvalcd  10340  seqovcd  10344  seq3distr  10394  fprodcl2lem  11484  ennnfonelemr  12124  ctinf  12131
  Copyright terms: Public domain W3C validator