ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem2 GIF version

Theorem 4sqlem2 12341
Description: Lemma for 4sq (not yet proved here) . Change bound variables in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem2 (𝐴𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑛,𝑤,𝑥,𝑦,𝑧   𝐴,𝑎,𝑏,𝑐,𝑑,𝑛   𝑆,𝑎,𝑏,𝑐,𝑑,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem2
StepHypRef Expression
1 4sq.1 . . 3 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
21eleq2i 2237 . 2 (𝐴𝑆𝐴 ∈ {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))})
3 zsqcl2 10553 . . . . . . . . . 10 (𝑎 ∈ ℤ → (𝑎↑2) ∈ ℕ0)
43ad2antrr 485 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑎↑2) ∈ ℕ0)
5 zsqcl2 10553 . . . . . . . . . 10 (𝑏 ∈ ℤ → (𝑏↑2) ∈ ℕ0)
65ad2antlr 486 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑏↑2) ∈ ℕ0)
74, 6nn0addcld 9192 . . . . . . . 8 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ((𝑎↑2) + (𝑏↑2)) ∈ ℕ0)
8 zsqcl2 10553 . . . . . . . . . 10 (𝑐 ∈ ℤ → (𝑐↑2) ∈ ℕ0)
98ad2antrl 487 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑐↑2) ∈ ℕ0)
10 zsqcl2 10553 . . . . . . . . . 10 (𝑑 ∈ ℤ → (𝑑↑2) ∈ ℕ0)
1110ad2antll 488 . . . . . . . . 9 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑑↑2) ∈ ℕ0)
129, 11nn0addcld 9192 . . . . . . . 8 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ((𝑐↑2) + (𝑑↑2)) ∈ ℕ0)
137, 12nn0addcld 9192 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ∈ ℕ0)
14 eleq1 2233 . . . . . . 7 (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → (𝐴 ∈ ℕ0 ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ∈ ℕ0))
1513, 14syl5ibrcom 156 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → 𝐴 ∈ ℕ0))
16 elex 2741 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ V)
1715, 16syl6 33 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → 𝐴 ∈ V))
1817rexlimdvva 2595 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → 𝐴 ∈ V))
1918rexlimivv 2593 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → 𝐴 ∈ V)
20 oveq1 5860 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥↑2) = (𝑎↑2))
2120oveq1d 5868 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥↑2) + (𝑦↑2)) = ((𝑎↑2) + (𝑦↑2)))
2221oveq1d 5868 . . . . . . 7 (𝑥 = 𝑎 → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) = (((𝑎↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))))
2322eqeq2d 2182 . . . . . 6 (𝑥 = 𝑎 → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ 𝑛 = (((𝑎↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
24232rexbidv 2495 . . . . 5 (𝑥 = 𝑎 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑎↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))))
25 oveq1 5860 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦↑2) = (𝑏↑2))
2625oveq2d 5869 . . . . . . . 8 (𝑦 = 𝑏 → ((𝑎↑2) + (𝑦↑2)) = ((𝑎↑2) + (𝑏↑2)))
2726oveq1d 5868 . . . . . . 7 (𝑦 = 𝑏 → (((𝑎↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑧↑2) + (𝑤↑2))))
2827eqeq2d 2182 . . . . . 6 (𝑦 = 𝑏 → (𝑛 = (((𝑎↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑧↑2) + (𝑤↑2)))))
29282rexbidv 2495 . . . . 5 (𝑦 = 𝑏 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑎↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑧↑2) + (𝑤↑2)))))
3024, 29cbvrex2vw 2708 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑧↑2) + (𝑤↑2))))
31 oveq1 5860 . . . . . . . . . 10 (𝑧 = 𝑐 → (𝑧↑2) = (𝑐↑2))
3231oveq1d 5868 . . . . . . . . 9 (𝑧 = 𝑐 → ((𝑧↑2) + (𝑤↑2)) = ((𝑐↑2) + (𝑤↑2)))
3332oveq2d 5869 . . . . . . . 8 (𝑧 = 𝑐 → (((𝑎↑2) + (𝑏↑2)) + ((𝑧↑2) + (𝑤↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑤↑2))))
3433eqeq2d 2182 . . . . . . 7 (𝑧 = 𝑐 → (𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑤↑2)))))
35 oveq1 5860 . . . . . . . . . 10 (𝑤 = 𝑑 → (𝑤↑2) = (𝑑↑2))
3635oveq2d 5869 . . . . . . . . 9 (𝑤 = 𝑑 → ((𝑐↑2) + (𝑤↑2)) = ((𝑐↑2) + (𝑑↑2)))
3736oveq2d 5869 . . . . . . . 8 (𝑤 = 𝑑 → (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑤↑2))) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3837eqeq2d 2182 . . . . . . 7 (𝑤 = 𝑑 → (𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑤↑2))) ↔ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
3934, 38cbvrex2vw 2708 . . . . . 6 (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
40 eqeq1 2177 . . . . . . 7 (𝑛 = 𝐴 → (𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
41402rexbidv 2495 . . . . . 6 (𝑛 = 𝐴 → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) ↔ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
4239, 41syl5bb 191 . . . . 5 (𝑛 = 𝐴 → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
43422rexbidv 2495 . . . 4 (𝑛 = 𝐴 → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑎↑2) + (𝑏↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
4430, 43syl5bb 191 . . 3 (𝑛 = 𝐴 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))))
4519, 44elab3 2882 . 2 (𝐴 ∈ {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
462, 45bitri 183 1 (𝐴𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  wrex 2449  Vcvv 2730  (class class class)co 5853   + caddc 7777  2c2 8929  0cn0 9135  cz 9212  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  4sqlem3  12342  4sqlem4  12344
  Copyright terms: Public domain W3C validator