Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvrex2vw | Unicode version |
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2705 with a disjoint variable condition, which does not require ax-13 2138. (Contributed by FL, 2-Jul-2012.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrex2vw.1 | |
cbvrex2vw.2 |
Ref | Expression |
---|---|
cbvrex2vw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrex2vw.1 | . . . 4 | |
2 | 1 | rexbidv 2466 | . . 3 |
3 | 2 | cbvrexvw 2696 | . 2 |
4 | cbvrex2vw.2 | . . . 4 | |
5 | 4 | cbvrexvw 2696 | . . 3 |
6 | 5 | rexbii 2472 | . 2 |
7 | 3, 6 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wrex 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-clel 2161 df-rex 2449 |
This theorem is referenced by: 4sqlem2 12315 2sqlem9 13560 |
Copyright terms: Public domain | W3C validator |