ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrex2vw Unicode version

Theorem cbvrex2vw 2703
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2705 with a disjoint variable condition, which does not require ax-13 2138. (Contributed by FL, 2-Jul-2012.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrex2vw.1  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
cbvrex2vw.2  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
cbvrex2vw  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
Distinct variable groups:    x, z    y, w    x, A, z    w, B    x, B, y, z    ch, w    ch, x    ph, z    ps, y
Allowed substitution hints:    ph( x, y, w)    ps( x, z, w)    ch( y, z)    A( y, w)

Proof of Theorem cbvrex2vw
StepHypRef Expression
1 cbvrex2vw.1 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
21rexbidv 2466 . . 3  |-  ( x  =  z  ->  ( E. y  e.  B  ph  <->  E. y  e.  B  ch ) )
32cbvrexvw 2696 . 2  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. y  e.  B  ch )
4 cbvrex2vw.2 . . . 4  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
54cbvrexvw 2696 . . 3  |-  ( E. y  e.  B  ch  <->  E. w  e.  B  ps )
65rexbii 2472 . 2  |-  ( E. z  e.  A  E. y  e.  B  ch  <->  E. z  e.  A  E. w  e.  B  ps )
73, 6bitri 183 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wrex 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-clel 2161  df-rex 2449
This theorem is referenced by:  4sqlem2  12315  2sqlem9  13560
  Copyright terms: Public domain W3C validator