Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvrex2vw | Unicode version |
Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2715 with a disjoint variable condition, which does not require ax-13 2148. (Contributed by FL, 2-Jul-2012.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrex2vw.1 | |
cbvrex2vw.2 |
Ref | Expression |
---|---|
cbvrex2vw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrex2vw.1 | . . . 4 | |
2 | 1 | rexbidv 2476 | . . 3 |
3 | 2 | cbvrexvw 2706 | . 2 |
4 | cbvrex2vw.2 | . . . 4 | |
5 | 4 | cbvrexvw 2706 | . . 3 |
6 | 5 | rexbii 2482 | . 2 |
7 | 3, 6 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wrex 2454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-clel 2171 df-rex 2459 |
This theorem is referenced by: 4sqlem2 12354 2sqlem9 14031 |
Copyright terms: Public domain | W3C validator |