![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbii | GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rexbii | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | rexbidv 2381 | . 2 ⊢ (⊤ → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
4 | 3 | mptru 1298 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ⊤wtru 1290 ∃wrex 2360 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-rex 2365 |
This theorem is referenced by: 2rexbii 2387 r19.29r 2507 r19.42v 2524 rexcom13 2532 rexrot4 2533 3reeanv 2537 cbvrex2v 2599 rexcom4 2642 rexcom4a 2643 rexcom4b 2644 ceqsrex2v 2749 reu7 2810 0el 3305 iuncom 3736 iuncom4 3737 iuniin 3740 dfiunv2 3766 iunab 3776 iunin2 3793 iundif2ss 3795 iunun 3808 iunxiun 3810 iunpwss 3820 inuni 3991 iunopab 4108 sucel 4237 iunpw 4302 xpiundi 4496 xpiundir 4497 reliin 4559 rexxpf 4583 iunxpf 4584 cnvuni 4622 dmiun 4645 dfima3 4777 rniun 4842 dminxp 4875 imaco 4936 coiun 4940 isarep1 5100 rexrn 5436 ralrn 5437 elrnrexdmb 5439 fnasrn 5475 fnasrng 5477 foima2 5530 rexima 5534 ralima 5535 abrexco 5538 imaiun 5539 fliftcnv 5574 abrexex2g 5891 abrexex2 5895 tfr1onlemaccex 6113 tfrcllemaccex 6126 tfrcldm 6128 qsid 6355 eroveu 6381 infmoti 6721 eldju 6757 genpdflem 7064 genpassl 7081 genpassu 7082 nqprm 7099 nqprrnd 7100 ltnqpr 7150 ltnqpri 7151 ltexprlemm 7157 ltexprlemopl 7158 ltexprlemopu 7160 caucvgprprlemaddq 7265 caucvgprprlem1 7266 caucvgsrlemgt1 7338 elreal 7364 axcaucvglemres 7432 dfinfre 8415 suprzclex 8842 supinfneg 9081 infsupneg 9082 ublbneg 9096 4fvwrd4 9547 caucvgre 10410 rexanuz 10417 rexfiuz 10418 resqrexlemglsq 10451 resqrexlemsqa 10453 resqrexlemex 10454 rersqreu 10457 clim0 10669 cbvsum 10745 fisum 10774 mertenslem2 10926 divalgb 11199 infssuzex 11219 bezoutlemmain 11261 bezoutlemex 11264 |
Copyright terms: Public domain | W3C validator |