ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm13.183 GIF version

Theorem pm13.183 2921
Description: Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only 𝐴 is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.183 (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem pm13.183
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2216 . 2 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐴 = 𝐵))
2 eqeq2 2219 . . . 4 (𝑦 = 𝐴 → (𝑧 = 𝑦𝑧 = 𝐴))
32bibi1d 233 . . 3 (𝑦 = 𝐴 → ((𝑧 = 𝑦𝑧 = 𝐵) ↔ (𝑧 = 𝐴𝑧 = 𝐵)))
43albidv 1850 . 2 (𝑦 = 𝐴 → (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
5 eqeq2 2219 . . . 4 (𝑦 = 𝐵 → (𝑧 = 𝑦𝑧 = 𝐵))
65alrimiv 1900 . . 3 (𝑦 = 𝐵 → ∀𝑧(𝑧 = 𝑦𝑧 = 𝐵))
7 stdpc4 1801 . . . 4 (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) → [𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵))
8 sbbi 1990 . . . . 5 ([𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵))
9 eqsb1 2313 . . . . . . 7 ([𝑦 / 𝑧]𝑧 = 𝐵𝑦 = 𝐵)
109bibi2i 227 . . . . . 6 (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) ↔ ([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵))
11 equsb1 1811 . . . . . . 7 [𝑦 / 𝑧]𝑧 = 𝑦
12 biimp 118 . . . . . . 7 (([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵) → ([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵))
1311, 12mpi 15 . . . . . 6 (([𝑦 / 𝑧]𝑧 = 𝑦𝑦 = 𝐵) → 𝑦 = 𝐵)
1410, 13sylbi 121 . . . . 5 (([𝑦 / 𝑧]𝑧 = 𝑦 ↔ [𝑦 / 𝑧]𝑧 = 𝐵) → 𝑦 = 𝐵)
158, 14sylbi 121 . . . 4 ([𝑦 / 𝑧](𝑧 = 𝑦𝑧 = 𝐵) → 𝑦 = 𝐵)
167, 15syl 14 . . 3 (∀𝑧(𝑧 = 𝑦𝑧 = 𝐵) → 𝑦 = 𝐵)
176, 16impbii 126 . 2 (𝑦 = 𝐵 ↔ ∀𝑧(𝑧 = 𝑦𝑧 = 𝐵))
181, 4, 17vtoclbg 2842 1 (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴𝑧 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1373   = wceq 1375  [wsb 1788  wcel 2180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781
This theorem is referenced by:  mpo2eqb  6085
  Copyright terms: Public domain W3C validator