| Step | Hyp | Ref
 | Expression | 
| 1 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) | 
| 2 | 1 | elrab 2920 | 
. . . . 5
⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁)) | 
| 3 |   | hashgcdeq 12408 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
(♯‘{𝑧 ∈
(0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦 ∥ 𝑁, (ϕ‘(𝑁 / 𝑦)), 0)) | 
| 4 | 3 | adantrr 479 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦 ∥ 𝑁, (ϕ‘(𝑁 / 𝑦)), 0)) | 
| 5 |   | iftrue 3566 | 
. . . . . . 7
⊢ (𝑦 ∥ 𝑁 → if(𝑦 ∥ 𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦))) | 
| 6 | 5 | ad2antll 491 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁)) → if(𝑦 ∥ 𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦))) | 
| 7 | 4, 6 | eqtrd 2229 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦))) | 
| 8 | 2, 7 | sylan2b 287 | 
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦))) | 
| 9 | 8 | sumeq2dv 11533 | 
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘(𝑁 / 𝑦))) | 
| 10 |   | dvdsfi 12407 | 
. . . 4
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) | 
| 11 |   | 0z 9337 | 
. . . . . . 7
⊢ 0 ∈
ℤ | 
| 12 |   | nnz 9345 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) | 
| 13 |   | fzofig 10524 | 
. . . . . . 7
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0..^𝑁) ∈ Fin) | 
| 14 | 11, 12, 13 | sylancr 414 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(0..^𝑁) ∈
Fin) | 
| 15 | 14 | adantr 276 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (0..^𝑁) ∈ Fin) | 
| 16 |   | ssrab2 3268 | 
. . . . . 6
⊢ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁) | 
| 17 | 16 | a1i 9 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)) | 
| 18 |   | elfzoelz 10222 | 
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) | 
| 19 | 18 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℤ) | 
| 20 | 12 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) | 
| 21 | 19, 20 | gcdcld 12135 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈
ℕ0) | 
| 22 | 21 | nn0zd 9446 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℤ) | 
| 23 |   | elrabi 2917 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → 𝑦 ∈ ℕ) | 
| 24 | 23 | ad2antlr 489 | 
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑦 ∈ ℕ) | 
| 25 | 24 | nnzd 9447 | 
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑦 ∈ ℤ) | 
| 26 |   | zdceq 9401 | 
. . . . . . . 8
⊢ (((𝑗 gcd 𝑁) ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID
(𝑗 gcd 𝑁) = 𝑦) | 
| 27 | 22, 25, 26 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → DECID (𝑗 gcd 𝑁) = 𝑦) | 
| 28 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑗 → (𝑧 gcd 𝑁) = (𝑗 gcd 𝑁)) | 
| 29 | 28 | eqeq1d 2205 | 
. . . . . . . . . . 11
⊢ (𝑧 = 𝑗 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑗 gcd 𝑁) = 𝑦)) | 
| 30 | 29 | elrab 2920 | 
. . . . . . . . . 10
⊢ (𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 𝑦)) | 
| 31 | 30 | baibr 921 | 
. . . . . . . . 9
⊢ (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 𝑦 ↔ 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) | 
| 32 | 31 | dcbid 839 | 
. . . . . . . 8
⊢ (𝑗 ∈ (0..^𝑁) → (DECID (𝑗 gcd 𝑁) = 𝑦 ↔ DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) | 
| 33 | 32 | adantl 277 | 
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (DECID (𝑗 gcd 𝑁) = 𝑦 ↔ DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) | 
| 34 | 27, 33 | mpbid 147 | 
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) | 
| 35 | 34 | ralrimiva 2570 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) | 
| 36 |   | ssfidc 6998 | 
. . . . 5
⊢
(((0..^𝑁) ∈ Fin
∧ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁) ∧ ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin) | 
| 37 | 15, 17, 35, 36 | syl3anc 1249 | 
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin) | 
| 38 |   | oveq1 5929 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 gcd 𝑁) = (𝑤 gcd 𝑁)) | 
| 39 | 38 | eqeq1d 2205 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑤 gcd 𝑁) = 𝑦)) | 
| 40 | 39 | elrab 2920 | 
. . . . . . . 8
⊢ (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑤 ∈ (0..^𝑁) ∧ (𝑤 gcd 𝑁) = 𝑦)) | 
| 41 | 40 | simprbi 275 | 
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} → (𝑤 gcd 𝑁) = 𝑦) | 
| 42 | 41 | rgen 2550 | 
. . . . . 6
⊢
∀𝑤 ∈
{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦 | 
| 43 | 42 | rgenw 2552 | 
. . . . 5
⊢
∀𝑦 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦 | 
| 44 |   | invdisj 4027 | 
. . . . 5
⊢
(∀𝑦 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦 → Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) | 
| 45 | 43, 44 | mp1i 10 | 
. . . 4
⊢ (𝑁 ∈ ℕ →
Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) | 
| 46 | 10, 37, 45 | hashiun 11643 | 
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) | 
| 47 |   | fveq2 5558 | 
. . . 4
⊢ (𝑑 = (𝑁 / 𝑦) → (ϕ‘𝑑) = (ϕ‘(𝑁 / 𝑦))) | 
| 48 |   | eqid 2196 | 
. . . . 5
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} | 
| 49 |   | eqid 2196 | 
. . . . 5
⊢ (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↦ (𝑁 / 𝑧)) | 
| 50 | 48, 49 | dvdsflip 12016 | 
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | 
| 51 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑧 = 𝑦 → (𝑁 / 𝑧) = (𝑁 / 𝑦)) | 
| 52 |   | simpr 110 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | 
| 53 | 12 | adantr 276 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑁 ∈ ℤ) | 
| 54 | 23 | adantl 277 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑦 ∈ ℕ) | 
| 55 |   | znq 9698 | 
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 / 𝑦) ∈ ℚ) | 
| 56 | 53, 54, 55 | syl2anc 411 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑦) ∈ ℚ) | 
| 57 | 49, 51, 52, 56 | fvmptd3 5655 | 
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦)) | 
| 58 |   | elrabi 2917 | 
. . . . . . 7
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → 𝑑 ∈ ℕ) | 
| 59 | 58 | adantl 277 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑑 ∈ ℕ) | 
| 60 | 59 | phicld 12386 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (ϕ‘𝑑) ∈ ℕ) | 
| 61 | 60 | nncnd 9004 | 
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (ϕ‘𝑑) ∈ ℂ) | 
| 62 | 47, 10, 50, 57, 61 | fsumf1o 11555 | 
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘(𝑁 / 𝑦))) | 
| 63 | 9, 46, 62 | 3eqtr4rd 2240 | 
. 2
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = (♯‘∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) | 
| 64 |   | iunrab 3964 | 
. . . . 5
⊢ ∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦} | 
| 65 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑥 = (𝑧 gcd 𝑁) → (𝑥 ∥ 𝑁 ↔ (𝑧 gcd 𝑁) ∥ 𝑁)) | 
| 66 |   | elfzoelz 10222 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ ℤ) | 
| 67 | 66 | adantl 277 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑧 ∈ ℤ) | 
| 68 | 12 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) | 
| 69 |   | nnne0 9018 | 
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | 
| 70 | 69 | neneqd 2388 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → ¬
𝑁 = 0) | 
| 71 | 70 | intnand 932 | 
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ¬
(𝑧 = 0 ∧ 𝑁 = 0)) | 
| 72 | 71 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ¬ (𝑧 = 0 ∧ 𝑁 = 0)) | 
| 73 |   | gcdn0cl 12129 | 
. . . . . . . . . 10
⊢ (((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑧 = 0 ∧ 𝑁 = 0)) → (𝑧 gcd 𝑁) ∈ ℕ) | 
| 74 | 67, 68, 72, 73 | syl21anc 1248 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ ℕ) | 
| 75 |   | gcddvds 12130 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁)) | 
| 76 | 67, 68, 75 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁)) | 
| 77 | 76 | simprd 114 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∥ 𝑁) | 
| 78 | 65, 74, 77 | elrabd 2922 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | 
| 79 |   | clel5 2901 | 
. . . . . . . 8
⊢ ((𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦) | 
| 80 | 78, 79 | sylib 122 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦) | 
| 81 | 80 | ralrimiva 2570 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦) | 
| 82 |   | rabid2 2674 | 
. . . . . 6
⊢
((0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦} ↔ ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦) | 
| 83 | 81, 82 | sylibr 134 | 
. . . . 5
⊢ (𝑁 ∈ ℕ →
(0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦}) | 
| 84 | 64, 83 | eqtr4id 2248 | 
. . . 4
⊢ (𝑁 ∈ ℕ → ∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = (0..^𝑁)) | 
| 85 | 84 | fveq2d 5562 | 
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (♯‘(0..^𝑁))) | 
| 86 |   | nnnn0 9256 | 
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) | 
| 87 |   | hashfzo0 10915 | 
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (♯‘(0..^𝑁)) = 𝑁) | 
| 88 | 86, 87 | syl 14 | 
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘(0..^𝑁)) =
𝑁) | 
| 89 | 85, 88 | eqtrd 2229 | 
. 2
⊢ (𝑁 ∈ ℕ →
(♯‘∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = 𝑁) | 
| 90 | 63, 89 | eqtrd 2229 | 
1
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = 𝑁) |