ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phisum GIF version

Theorem phisum 12223
Description: The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
phisum (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Distinct variable group:   𝑥,𝑁,𝑑

Proof of Theorem phisum
Dummy variables 𝑧 𝑦 𝑤 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4003 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
21elrab 2893 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁))
3 hashgcdeq 12222 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
43adantrr 479 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
5 iftrue 3539 . . . . . . 7 (𝑦𝑁 → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
65ad2antll 491 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
74, 6eqtrd 2210 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
82, 7sylan2b 287 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
98sumeq2dv 11360 . . 3 (𝑁 ∈ ℕ → Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
10 1zzd 9269 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
11 nnz 9261 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1210, 11fzfigd 10417 . . . . 5 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
13 dvdsssfz1 11841 . . . . 5 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
14 elfznn 10040 . . . . . . . 8 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℕ)
15 dvdsdc 11789 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑗𝑁)
1614, 11, 15syl2anr 290 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → DECID 𝑗𝑁)
17 ibar 301 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝑗𝑁 ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑁)))
1814, 17syl 14 . . . . . . . . . 10 (𝑗 ∈ (1...𝑁) → (𝑗𝑁 ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑁)))
19 breq1 4003 . . . . . . . . . . 11 (𝑥 = 𝑗 → (𝑥𝑁𝑗𝑁))
2019elrab 2893 . . . . . . . . . 10 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑁))
2118, 20bitr4di 198 . . . . . . . . 9 (𝑗 ∈ (1...𝑁) → (𝑗𝑁𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}))
2221dcbid 838 . . . . . . . 8 (𝑗 ∈ (1...𝑁) → (DECID 𝑗𝑁DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}))
2322adantl 277 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → (DECID 𝑗𝑁DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}))
2416, 23mpbid 147 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
2524ralrimiva 2550 . . . . 5 (𝑁 ∈ ℕ → ∀𝑗 ∈ (1...𝑁)DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
26 ssfidc 6928 . . . . 5 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁) ∧ ∀𝑗 ∈ (1...𝑁)DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
2712, 13, 25, 26syl3anc 1238 . . . 4 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
28 0z 9253 . . . . . . 7 0 ∈ ℤ
29 fzofig 10418 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin)
3028, 11, 29sylancr 414 . . . . . 6 (𝑁 ∈ ℕ → (0..^𝑁) ∈ Fin)
3130adantr 276 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (0..^𝑁) ∈ Fin)
32 ssrab2 3240 . . . . . 6 {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)
3332a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁))
34 elfzoelz 10133 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ)
3534adantl 277 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℤ)
3611ad2antrr 488 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
3735, 36gcdcld 11952 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℕ0)
3837nn0zd 9362 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℤ)
39 elrabi 2890 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑦 ∈ ℕ)
4039ad2antlr 489 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑦 ∈ ℕ)
4140nnzd 9363 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑦 ∈ ℤ)
42 zdceq 9317 . . . . . . . 8 (((𝑗 gcd 𝑁) ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID (𝑗 gcd 𝑁) = 𝑦)
4338, 41, 42syl2anc 411 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → DECID (𝑗 gcd 𝑁) = 𝑦)
44 ibar 301 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 𝑦 ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 𝑦)))
45 oveq1 5876 . . . . . . . . . . . 12 (𝑧 = 𝑗 → (𝑧 gcd 𝑁) = (𝑗 gcd 𝑁))
4645eqeq1d 2186 . . . . . . . . . . 11 (𝑧 = 𝑗 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑗 gcd 𝑁) = 𝑦))
4746elrab 2893 . . . . . . . . . 10 (𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 𝑦))
4844, 47bitr4di 198 . . . . . . . . 9 (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 𝑦𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
4948dcbid 838 . . . . . . . 8 (𝑗 ∈ (0..^𝑁) → (DECID (𝑗 gcd 𝑁) = 𝑦DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
5049adantl 277 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (DECID (𝑗 gcd 𝑁) = 𝑦DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
5143, 50mpbid 147 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
5251ralrimiva 2550 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
53 ssfidc 6928 . . . . 5 (((0..^𝑁) ∈ Fin ∧ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁) ∧ ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
5431, 33, 52, 53syl3anc 1238 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
55 oveq1 5876 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 gcd 𝑁) = (𝑤 gcd 𝑁))
5655eqeq1d 2186 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑤 gcd 𝑁) = 𝑦))
5756elrab 2893 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑤 ∈ (0..^𝑁) ∧ (𝑤 gcd 𝑁) = 𝑦))
5857simprbi 275 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} → (𝑤 gcd 𝑁) = 𝑦)
5958rgen 2530 . . . . . 6 𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
6059rgenw 2532 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
61 invdisj 3994 . . . . 5 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
6260, 61mp1i 10 . . . 4 (𝑁 ∈ ℕ → Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
6327, 54, 62hashiun 11470 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
64 fveq2 5511 . . . 4 (𝑑 = (𝑁 / 𝑦) → (ϕ‘𝑑) = (ϕ‘(𝑁 / 𝑦)))
65 eqid 2177 . . . . 5 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
66 eqid 2177 . . . . 5 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))
6765, 66dvdsflip 11840 . . . 4 (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
68 oveq2 5877 . . . . 5 (𝑧 = 𝑦 → (𝑁 / 𝑧) = (𝑁 / 𝑦))
69 simpr 110 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
7011adantr 276 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑁 ∈ ℤ)
7139adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑦 ∈ ℕ)
72 znq 9613 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 / 𝑦) ∈ ℚ)
7370, 71, 72syl2anc 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑦) ∈ ℚ)
7466, 68, 69, 73fvmptd3 5605 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦))
75 elrabi 2890 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
7675adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
7776phicld 12201 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℕ)
7877nncnd 8922 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℂ)
7964, 27, 67, 74, 78fsumf1o 11382 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
809, 63, 793eqtr4rd 2221 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
81 iunrab 3931 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦}
82 breq1 4003 . . . . . . . . 9 (𝑥 = (𝑧 gcd 𝑁) → (𝑥𝑁 ↔ (𝑧 gcd 𝑁) ∥ 𝑁))
83 elfzoelz 10133 . . . . . . . . . . 11 (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ ℤ)
8483adantl 277 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑧 ∈ ℤ)
8511adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
86 nnne0 8936 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8786neneqd 2368 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
8887intnand 931 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
8988adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
90 gcdn0cl 11946 . . . . . . . . . 10 (((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑧 = 0 ∧ 𝑁 = 0)) → (𝑧 gcd 𝑁) ∈ ℕ)
9184, 85, 89, 90syl21anc 1237 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ ℕ)
92 gcddvds 11947 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
9384, 85, 92syl2anc 411 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
9493simprd 114 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∥ 𝑁)
9582, 91, 94elrabd 2895 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
96 clel5 2874 . . . . . . . 8 ((𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
9795, 96sylib 122 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
9897ralrimiva 2550 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
99 rabid2 2653 . . . . . 6 ((0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦} ↔ ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
10098, 99sylibr 134 . . . . 5 (𝑁 ∈ ℕ → (0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦})
10181, 100eqtr4id 2229 . . . 4 (𝑁 ∈ ℕ → 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = (0..^𝑁))
102101fveq2d 5515 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (♯‘(0..^𝑁)))
103 nnnn0 9172 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
104 hashfzo0 10787 . . . 4 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
105103, 104syl 14 . . 3 (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁)
106102, 105eqtrd 2210 . 2 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = 𝑁)
10780, 106eqtrd 2210 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459  wss 3129  ifcif 3534   ciun 3884  Disj wdisj 3977   class class class wbr 4000  cmpt 4061  cfv 5212  (class class class)co 5869  Fincfn 6734  0cc0 7802  1c1 7803   / cdiv 8618  cn 8908  0cn0 9165  cz 9242  cq 9608  ...cfz 9995  ..^cfzo 10128  chash 10739  Σcsu 11345  cdvds 11778   gcd cgcd 11926  ϕcphi 12192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-dvds 11779  df-gcd 11927  df-phi 12194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator