ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phisum GIF version

Theorem phisum 12378
Description: The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
phisum (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Distinct variable group:   𝑥,𝑁,𝑑

Proof of Theorem phisum
Dummy variables 𝑧 𝑦 𝑤 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4032 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑁𝑦𝑁))
21elrab 2916 . . . . 5 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁))
3 hashgcdeq 12377 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
43adantrr 479 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0))
5 iftrue 3562 . . . . . . 7 (𝑦𝑁 → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
65ad2antll 491 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → if(𝑦𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦)))
74, 6eqtrd 2226 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
82, 7sylan2b 287 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦)))
98sumeq2dv 11511 . . 3 (𝑁 ∈ ℕ → Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
10 1zzd 9344 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
11 nnz 9336 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1210, 11fzfigd 10502 . . . . 5 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
13 dvdsssfz1 11994 . . . . 5 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
14 elfznn 10120 . . . . . . . 8 (𝑗 ∈ (1...𝑁) → 𝑗 ∈ ℕ)
15 dvdsdc 11941 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID 𝑗𝑁)
1614, 11, 15syl2anr 290 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → DECID 𝑗𝑁)
17 ibar 301 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝑗𝑁 ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑁)))
1814, 17syl 14 . . . . . . . . . 10 (𝑗 ∈ (1...𝑁) → (𝑗𝑁 ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑁)))
19 breq1 4032 . . . . . . . . . . 11 (𝑥 = 𝑗 → (𝑥𝑁𝑗𝑁))
2019elrab 2916 . . . . . . . . . 10 (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ (𝑗 ∈ ℕ ∧ 𝑗𝑁))
2118, 20bitr4di 198 . . . . . . . . 9 (𝑗 ∈ (1...𝑁) → (𝑗𝑁𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}))
2221dcbid 839 . . . . . . . 8 (𝑗 ∈ (1...𝑁) → (DECID 𝑗𝑁DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}))
2322adantl 277 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → (DECID 𝑗𝑁DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}))
2416, 23mpbid 147 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...𝑁)) → DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
2524ralrimiva 2567 . . . . 5 (𝑁 ∈ ℕ → ∀𝑗 ∈ (1...𝑁)DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
26 ssfidc 6991 . . . . 5 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁) ∧ ∀𝑗 ∈ (1...𝑁)DECID 𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
2712, 13, 25, 26syl3anc 1249 . . . 4 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
28 0z 9328 . . . . . . 7 0 ∈ ℤ
29 fzofig 10503 . . . . . . 7 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin)
3028, 11, 29sylancr 414 . . . . . 6 (𝑁 ∈ ℕ → (0..^𝑁) ∈ Fin)
3130adantr 276 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (0..^𝑁) ∈ Fin)
32 ssrab2 3264 . . . . . 6 {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)
3332a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁))
34 elfzoelz 10213 . . . . . . . . . . 11 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ)
3534adantl 277 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℤ)
3611ad2antrr 488 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
3735, 36gcdcld 12105 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℕ0)
3837nn0zd 9437 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℤ)
39 elrabi 2913 . . . . . . . . . 10 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑦 ∈ ℕ)
4039ad2antlr 489 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑦 ∈ ℕ)
4140nnzd 9438 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑦 ∈ ℤ)
42 zdceq 9392 . . . . . . . 8 (((𝑗 gcd 𝑁) ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID (𝑗 gcd 𝑁) = 𝑦)
4338, 41, 42syl2anc 411 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → DECID (𝑗 gcd 𝑁) = 𝑦)
44 ibar 301 . . . . . . . . . 10 (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 𝑦 ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 𝑦)))
45 oveq1 5925 . . . . . . . . . . . 12 (𝑧 = 𝑗 → (𝑧 gcd 𝑁) = (𝑗 gcd 𝑁))
4645eqeq1d 2202 . . . . . . . . . . 11 (𝑧 = 𝑗 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑗 gcd 𝑁) = 𝑦))
4746elrab 2916 . . . . . . . . . 10 (𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 𝑦))
4844, 47bitr4di 198 . . . . . . . . 9 (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 𝑦𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
4948dcbid 839 . . . . . . . 8 (𝑗 ∈ (0..^𝑁) → (DECID (𝑗 gcd 𝑁) = 𝑦DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
5049adantl 277 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (DECID (𝑗 gcd 𝑁) = 𝑦DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
5143, 50mpbid 147 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
5251ralrimiva 2567 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
53 ssfidc 6991 . . . . 5 (((0..^𝑁) ∈ Fin ∧ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁) ∧ ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
5431, 33, 52, 53syl3anc 1249 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin)
55 oveq1 5925 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 gcd 𝑁) = (𝑤 gcd 𝑁))
5655eqeq1d 2202 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑤 gcd 𝑁) = 𝑦))
5756elrab 2916 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑤 ∈ (0..^𝑁) ∧ (𝑤 gcd 𝑁) = 𝑦))
5857simprbi 275 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} → (𝑤 gcd 𝑁) = 𝑦)
5958rgen 2547 . . . . . 6 𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
6059rgenw 2549 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦
61 invdisj 4023 . . . . 5 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
6260, 61mp1i 10 . . . 4 (𝑁 ∈ ℕ → Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})
6327, 54, 62hashiun 11621 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
64 fveq2 5554 . . . 4 (𝑑 = (𝑁 / 𝑦) → (ϕ‘𝑑) = (ϕ‘(𝑁 / 𝑦)))
65 eqid 2193 . . . . 5 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
66 eqid 2193 . . . . 5 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))
6765, 66dvdsflip 11993 . . . 4 (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
68 oveq2 5926 . . . . 5 (𝑧 = 𝑦 → (𝑁 / 𝑧) = (𝑁 / 𝑦))
69 simpr 110 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
7011adantr 276 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑁 ∈ ℤ)
7139adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑦 ∈ ℕ)
72 znq 9689 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 / 𝑦) ∈ ℚ)
7370, 71, 72syl2anc 411 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑦) ∈ ℚ)
7466, 68, 69, 73fvmptd3 5651 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦))
75 elrabi 2913 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
7675adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
7776phicld 12356 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℕ)
7877nncnd 8996 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (ϕ‘𝑑) ∈ ℂ)
7964, 27, 67, 74, 78fsumf1o 11533 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘(𝑁 / 𝑦)))
809, 63, 793eqtr4rd 2237 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}))
81 iunrab 3960 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦}
82 breq1 4032 . . . . . . . . 9 (𝑥 = (𝑧 gcd 𝑁) → (𝑥𝑁 ↔ (𝑧 gcd 𝑁) ∥ 𝑁))
83 elfzoelz 10213 . . . . . . . . . . 11 (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ ℤ)
8483adantl 277 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑧 ∈ ℤ)
8511adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
86 nnne0 9010 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8786neneqd 2385 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
8887intnand 932 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
8988adantr 276 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ¬ (𝑧 = 0 ∧ 𝑁 = 0))
90 gcdn0cl 12099 . . . . . . . . . 10 (((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑧 = 0 ∧ 𝑁 = 0)) → (𝑧 gcd 𝑁) ∈ ℕ)
9184, 85, 89, 90syl21anc 1248 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ ℕ)
92 gcddvds 12100 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
9384, 85, 92syl2anc 411 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁))
9493simprd 114 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∥ 𝑁)
9582, 91, 94elrabd 2918 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
96 clel5 2897 . . . . . . . 8 ((𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↔ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
9795, 96sylib 122 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
9897ralrimiva 2567 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
99 rabid2 2671 . . . . . 6 ((0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦} ↔ ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦)
10098, 99sylibr 134 . . . . 5 (𝑁 ∈ ℕ → (0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (𝑧 gcd 𝑁) = 𝑦})
10181, 100eqtr4id 2245 . . . 4 (𝑁 ∈ ℕ → 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = (0..^𝑁))
102101fveq2d 5558 . . 3 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (♯‘(0..^𝑁)))
103 nnnn0 9247 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
104 hashfzo0 10894 . . . 4 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
105103, 104syl 14 . . 3 (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁)
106102, 105eqtrd 2226 . 2 (𝑁 ∈ ℕ → (♯‘ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = 𝑁)
10780, 106eqtrd 2226 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (ϕ‘𝑑) = 𝑁)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {crab 2476  wss 3153  ifcif 3557   ciun 3912  Disj wdisj 4006   class class class wbr 4029  cmpt 4090  cfv 5254  (class class class)co 5918  Fincfn 6794  0cc0 7872  1c1 7873   / cdiv 8691  cn 8982  0cn0 9240  cz 9317  cq 9684  ...cfz 10074  ..^cfzo 10208  chash 10846  Σcsu 11496  cdvds 11930   gcd cgcd 12079  ϕcphi 12347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-dvds 11931  df-gcd 12080  df-phi 12349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator