| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4037 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∥ 𝑁 ↔ 𝑦 ∥ 𝑁)) |
| 2 | 1 | elrab 2920 |
. . . . 5
⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁)) |
| 3 | | hashgcdeq 12433 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
(♯‘{𝑧 ∈
(0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦 ∥ 𝑁, (ϕ‘(𝑁 / 𝑦)), 0)) |
| 4 | 3 | adantrr 479 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = if(𝑦 ∥ 𝑁, (ϕ‘(𝑁 / 𝑦)), 0)) |
| 5 | | iftrue 3567 |
. . . . . . 7
⊢ (𝑦 ∥ 𝑁 → if(𝑦 ∥ 𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦))) |
| 6 | 5 | ad2antll 491 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁)) → if(𝑦 ∥ 𝑁, (ϕ‘(𝑁 / 𝑦)), 0) = (ϕ‘(𝑁 / 𝑦))) |
| 7 | 4, 6 | eqtrd 2229 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑦 ∥ 𝑁)) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦))) |
| 8 | 2, 7 | sylan2b 287 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (ϕ‘(𝑁 / 𝑦))) |
| 9 | 8 | sumeq2dv 11550 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘(𝑁 / 𝑦))) |
| 10 | | dvdsfi 12432 |
. . . 4
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
| 11 | | 0z 9354 |
. . . . . . 7
⊢ 0 ∈
ℤ |
| 12 | | nnz 9362 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 13 | | fzofig 10541 |
. . . . . . 7
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0..^𝑁) ∈ Fin) |
| 14 | 11, 12, 13 | sylancr 414 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(0..^𝑁) ∈
Fin) |
| 15 | 14 | adantr 276 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (0..^𝑁) ∈ Fin) |
| 16 | | ssrab2 3269 |
. . . . . 6
⊢ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁) |
| 17 | 16 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁)) |
| 18 | | elfzoelz 10239 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) |
| 19 | 18 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℤ) |
| 20 | 12 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
| 21 | 19, 20 | gcdcld 12160 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈
ℕ0) |
| 22 | 21 | nn0zd 9463 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 gcd 𝑁) ∈ ℤ) |
| 23 | | elrabi 2917 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → 𝑦 ∈ ℕ) |
| 24 | 23 | ad2antlr 489 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑦 ∈ ℕ) |
| 25 | 24 | nnzd 9464 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑦 ∈ ℤ) |
| 26 | | zdceq 9418 |
. . . . . . . 8
⊢ (((𝑗 gcd 𝑁) ∈ ℤ ∧ 𝑦 ∈ ℤ) → DECID
(𝑗 gcd 𝑁) = 𝑦) |
| 27 | 22, 25, 26 | syl2anc 411 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → DECID (𝑗 gcd 𝑁) = 𝑦) |
| 28 | | oveq1 5932 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑗 → (𝑧 gcd 𝑁) = (𝑗 gcd 𝑁)) |
| 29 | 28 | eqeq1d 2205 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑗 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑗 gcd 𝑁) = 𝑦)) |
| 30 | 29 | elrab 2920 |
. . . . . . . . . 10
⊢ (𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑗 ∈ (0..^𝑁) ∧ (𝑗 gcd 𝑁) = 𝑦)) |
| 31 | 30 | baibr 921 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0..^𝑁) → ((𝑗 gcd 𝑁) = 𝑦 ↔ 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) |
| 32 | 31 | dcbid 839 |
. . . . . . . 8
⊢ (𝑗 ∈ (0..^𝑁) → (DECID (𝑗 gcd 𝑁) = 𝑦 ↔ DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) |
| 33 | 32 | adantl 277 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → (DECID (𝑗 gcd 𝑁) = 𝑦 ↔ DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) |
| 34 | 27, 33 | mpbid 147 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑗 ∈ (0..^𝑁)) → DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) |
| 35 | 34 | ralrimiva 2570 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) |
| 36 | | ssfidc 7007 |
. . . . 5
⊢
(((0..^𝑁) ∈ Fin
∧ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ⊆ (0..^𝑁) ∧ ∀𝑗 ∈ (0..^𝑁)DECID 𝑗 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin) |
| 37 | 15, 17, 35, 36 | syl3anc 1249 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ∈ Fin) |
| 38 | | oveq1 5932 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 gcd 𝑁) = (𝑤 gcd 𝑁)) |
| 39 | 38 | eqeq1d 2205 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑧 gcd 𝑁) = 𝑦 ↔ (𝑤 gcd 𝑁) = 𝑦)) |
| 40 | 39 | elrab 2920 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} ↔ (𝑤 ∈ (0..^𝑁) ∧ (𝑤 gcd 𝑁) = 𝑦)) |
| 41 | 40 | simprbi 275 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} → (𝑤 gcd 𝑁) = 𝑦) |
| 42 | 41 | rgen 2550 |
. . . . . 6
⊢
∀𝑤 ∈
{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦 |
| 43 | 42 | rgenw 2552 |
. . . . 5
⊢
∀𝑦 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦 |
| 44 | | invdisj 4028 |
. . . . 5
⊢
(∀𝑦 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁}∀𝑤 ∈ {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} (𝑤 gcd 𝑁) = 𝑦 → Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) |
| 45 | 43, 44 | mp1i 10 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Disj 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) |
| 46 | 10, 37, 45 | hashiun 11660 |
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (♯‘{𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) |
| 47 | | fveq2 5561 |
. . . 4
⊢ (𝑑 = (𝑁 / 𝑦) → (ϕ‘𝑑) = (ϕ‘(𝑁 / 𝑦))) |
| 48 | | eqid 2196 |
. . . . 5
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
| 49 | | eqid 2196 |
. . . . 5
⊢ (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↦ (𝑁 / 𝑧)) |
| 50 | 48, 49 | dvdsflip 12033 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 51 | | oveq2 5933 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝑁 / 𝑧) = (𝑁 / 𝑦)) |
| 52 | | simpr 110 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 53 | 12 | adantr 276 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑁 ∈ ℤ) |
| 54 | 23 | adantl 277 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑦 ∈ ℕ) |
| 55 | | znq 9715 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑦 ∈ ℕ) → (𝑁 / 𝑦) ∈ ℚ) |
| 56 | 53, 54, 55 | syl2anc 411 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑦) ∈ ℚ) |
| 57 | 49, 51, 52, 56 | fvmptd3 5658 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↦ (𝑁 / 𝑧))‘𝑦) = (𝑁 / 𝑦)) |
| 58 | | elrabi 2917 |
. . . . . . 7
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → 𝑑 ∈ ℕ) |
| 59 | 58 | adantl 277 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑑 ∈ ℕ) |
| 60 | 59 | phicld 12411 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (ϕ‘𝑑) ∈ ℕ) |
| 61 | 60 | nncnd 9021 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (ϕ‘𝑑) ∈ ℂ) |
| 62 | 47, 10, 50, 57, 61 | fsumf1o 11572 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = Σ𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘(𝑁 / 𝑦))) |
| 63 | 9, 46, 62 | 3eqtr4rd 2240 |
. 2
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = (♯‘∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦})) |
| 64 | | iunrab 3965 |
. . . . 5
⊢ ∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦} |
| 65 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑥 = (𝑧 gcd 𝑁) → (𝑥 ∥ 𝑁 ↔ (𝑧 gcd 𝑁) ∥ 𝑁)) |
| 66 | | elfzoelz 10239 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ ℤ) |
| 67 | 66 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑧 ∈ ℤ) |
| 68 | 12 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ) |
| 69 | | nnne0 9035 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 70 | 69 | neneqd 2388 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → ¬
𝑁 = 0) |
| 71 | 70 | intnand 932 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ¬
(𝑧 = 0 ∧ 𝑁 = 0)) |
| 72 | 71 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ¬ (𝑧 = 0 ∧ 𝑁 = 0)) |
| 73 | | gcdn0cl 12154 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑧 = 0 ∧ 𝑁 = 0)) → (𝑧 gcd 𝑁) ∈ ℕ) |
| 74 | 67, 68, 72, 73 | syl21anc 1248 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ ℕ) |
| 75 | | gcddvds 12155 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁)) |
| 76 | 67, 68, 75 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ((𝑧 gcd 𝑁) ∥ 𝑧 ∧ (𝑧 gcd 𝑁) ∥ 𝑁)) |
| 77 | 76 | simprd 114 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∥ 𝑁) |
| 78 | 65, 74, 77 | elrabd 2922 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → (𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 79 | | clel5 2901 |
. . . . . . . 8
⊢ ((𝑧 gcd 𝑁) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ↔ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦) |
| 80 | 78, 79 | sylib 122 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0..^𝑁)) → ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦) |
| 81 | 80 | ralrimiva 2570 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦) |
| 82 | | rabid2 2674 |
. . . . . 6
⊢
((0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦} ↔ ∀𝑧 ∈ (0..^𝑁)∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦) |
| 83 | 81, 82 | sylibr 134 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(0..^𝑁) = {𝑧 ∈ (0..^𝑁) ∣ ∃𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (𝑧 gcd 𝑁) = 𝑦}) |
| 84 | 64, 83 | eqtr4id 2248 |
. . . 4
⊢ (𝑁 ∈ ℕ → ∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦} = (0..^𝑁)) |
| 85 | 84 | fveq2d 5565 |
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = (♯‘(0..^𝑁))) |
| 86 | | nnnn0 9273 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 87 | | hashfzo0 10932 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (♯‘(0..^𝑁)) = 𝑁) |
| 88 | 86, 87 | syl 14 |
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘(0..^𝑁)) =
𝑁) |
| 89 | 85, 88 | eqtrd 2229 |
. 2
⊢ (𝑁 ∈ ℕ →
(♯‘∪ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} {𝑧 ∈ (0..^𝑁) ∣ (𝑧 gcd 𝑁) = 𝑦}) = 𝑁) |
| 90 | 63, 89 | eqtrd 2229 |
1
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = 𝑁) |