Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidin GIF version

Theorem decidin 16119
Description: If A is a decidable subclass of B (meaning: it is a subclass of B and it is decidable in B), and B is decidable in C, then A is decidable in C. (Contributed by BJ, 19-Feb-2022.)
Hypotheses
Ref Expression
decidin.ss (𝜑𝐴𝐵)
decidin.a (𝜑𝐴 DECIDin 𝐵)
decidin.b (𝜑𝐵 DECIDin 𝐶)
Assertion
Ref Expression
decidin (𝜑𝐴 DECIDin 𝐶)

Proof of Theorem decidin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 decidin.b . . . 4 (𝜑𝐵 DECIDin 𝐶)
2 decidi 16117 . . . 4 (𝐵 DECIDin 𝐶 → (𝑥𝐶 → (𝑥𝐵 ∨ ¬ 𝑥𝐵)))
31, 2syl 14 . . 3 (𝜑 → (𝑥𝐶 → (𝑥𝐵 ∨ ¬ 𝑥𝐵)))
4 decidin.a . . . . 5 (𝜑𝐴 DECIDin 𝐵)
5 decidi 16117 . . . . 5 (𝐴 DECIDin 𝐵 → (𝑥𝐵 → (𝑥𝐴 ∨ ¬ 𝑥𝐴)))
64, 5syl 14 . . . 4 (𝜑 → (𝑥𝐵 → (𝑥𝐴 ∨ ¬ 𝑥𝐴)))
7 decidin.ss . . . . . 6 (𝜑𝐴𝐵)
87ssneld 3226 . . . . 5 (𝜑 → (¬ 𝑥𝐵 → ¬ 𝑥𝐴))
9 olc 716 . . . . 5 𝑥𝐴 → (𝑥𝐴 ∨ ¬ 𝑥𝐴))
108, 9syl6 33 . . . 4 (𝜑 → (¬ 𝑥𝐵 → (𝑥𝐴 ∨ ¬ 𝑥𝐴)))
116, 10jaod 722 . . 3 (𝜑 → ((𝑥𝐵 ∨ ¬ 𝑥𝐵) → (𝑥𝐴 ∨ ¬ 𝑥𝐴)))
123, 11syld 45 . 2 (𝜑 → (𝑥𝐶 → (𝑥𝐴 ∨ ¬ 𝑥𝐴)))
1312decidr 16118 1 (𝜑𝐴 DECIDin 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 713  wcel 2200  wss 3197   DECIDin wdcin 16115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-dcin 16116
This theorem is referenced by:  sumdc2  16121
  Copyright terms: Public domain W3C validator