| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > decidin | GIF version | ||
| Description: If A is a decidable subclass of B (meaning: it is a subclass of B and it is decidable in B), and B is decidable in C, then A is decidable in C. (Contributed by BJ, 19-Feb-2022.) |
| Ref | Expression |
|---|---|
| decidin.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| decidin.a | ⊢ (𝜑 → 𝐴 DECIDin 𝐵) |
| decidin.b | ⊢ (𝜑 → 𝐵 DECIDin 𝐶) |
| Ref | Expression |
|---|---|
| decidin | ⊢ (𝜑 → 𝐴 DECIDin 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decidin.b | . . . 4 ⊢ (𝜑 → 𝐵 DECIDin 𝐶) | |
| 2 | decidi 16117 | . . . 4 ⊢ (𝐵 DECIDin 𝐶 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵))) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵))) |
| 4 | decidin.a | . . . . 5 ⊢ (𝜑 → 𝐴 DECIDin 𝐵) | |
| 5 | decidi 16117 | . . . . 5 ⊢ (𝐴 DECIDin 𝐵 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
| 7 | decidin.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 8 | 7 | ssneld 3226 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
| 9 | olc 716 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
| 10 | 8, 9 | syl6 33 | . . . 4 ⊢ (𝜑 → (¬ 𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
| 11 | 6, 10 | jaod 722 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
| 12 | 3, 11 | syld 45 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
| 13 | 12 | decidr 16118 | 1 ⊢ (𝜑 → 𝐴 DECIDin 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 ∈ wcel 2200 ⊆ wss 3197 DECIDin wdcin 16115 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-dcin 16116 |
| This theorem is referenced by: sumdc2 16121 |
| Copyright terms: Public domain | W3C validator |