![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > decidin | GIF version |
Description: If A is a decidable subclass of B (meaning: it is a subclass of B and it is decidable in B), and B is decidable in C, then A is decidable in C. (Contributed by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
decidin.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
decidin.a | ⊢ (𝜑 → 𝐴 DECIDin 𝐵) |
decidin.b | ⊢ (𝜑 → 𝐵 DECIDin 𝐶) |
Ref | Expression |
---|---|
decidin | ⊢ (𝜑 → 𝐴 DECIDin 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decidin.b | . . . 4 ⊢ (𝜑 → 𝐵 DECIDin 𝐶) | |
2 | decidi 15287 | . . . 4 ⊢ (𝐵 DECIDin 𝐶 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵))) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵))) |
4 | decidin.a | . . . . 5 ⊢ (𝜑 → 𝐴 DECIDin 𝐵) | |
5 | decidi 15287 | . . . . 5 ⊢ (𝐴 DECIDin 𝐵 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
7 | decidin.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
8 | 7 | ssneld 3181 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
9 | olc 712 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
10 | 8, 9 | syl6 33 | . . . 4 ⊢ (𝜑 → (¬ 𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
11 | 6, 10 | jaod 718 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
12 | 3, 11 | syld 45 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
13 | 12 | decidr 15288 | 1 ⊢ (𝜑 → 𝐴 DECIDin 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 ∈ wcel 2164 ⊆ wss 3153 DECIDin wdcin 15285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3159 df-ss 3166 df-dcin 15286 |
This theorem is referenced by: sumdc2 15291 |
Copyright terms: Public domain | W3C validator |