Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > decidin | GIF version |
Description: If A is a decidable subclass of B (meaning: it is a subclass of B and it is decidable in B), and B is decidable in C, then A is decidable in C. (Contributed by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
decidin.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
decidin.a | ⊢ (𝜑 → 𝐴 DECIDin 𝐵) |
decidin.b | ⊢ (𝜑 → 𝐵 DECIDin 𝐶) |
Ref | Expression |
---|---|
decidin | ⊢ (𝜑 → 𝐴 DECIDin 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decidin.b | . . . 4 ⊢ (𝜑 → 𝐵 DECIDin 𝐶) | |
2 | decidi 13676 | . . . 4 ⊢ (𝐵 DECIDin 𝐶 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵))) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵))) |
4 | decidin.a | . . . . 5 ⊢ (𝜑 → 𝐴 DECIDin 𝐵) | |
5 | decidi 13676 | . . . . 5 ⊢ (𝐴 DECIDin 𝐵 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
7 | decidin.ss | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
8 | 7 | ssneld 3144 | . . . . 5 ⊢ (𝜑 → (¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴)) |
9 | olc 701 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴)) | |
10 | 8, 9 | syl6 33 | . . . 4 ⊢ (𝜑 → (¬ 𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
11 | 6, 10 | jaod 707 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∨ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
12 | 3, 11 | syld 45 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐴))) |
13 | 12 | decidr 13677 | 1 ⊢ (𝜑 → 𝐴 DECIDin 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 ∈ wcel 2136 ⊆ wss 3116 DECIDin wdcin 13674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-dcin 13675 |
This theorem is referenced by: sumdc2 13680 |
Copyright terms: Public domain | W3C validator |