Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > uzdcinzz | GIF version |
Description: An upperset of integers is decidable in the integers. Reformulation of eluzdc 9548. (Contributed by Jim Kingdon, 18-Apr-2020.) (Revised by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
uzdcinzz | ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlelttric 9236 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 ≤ 𝑥 ∨ 𝑥 < 𝑀)) | |
2 | eluz 9479 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑥)) | |
3 | 2 | biimprd 157 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 ≤ 𝑥 → 𝑥 ∈ (ℤ≥‘𝑀))) |
4 | zltnle 9237 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑥)) | |
5 | 4 | ancoms 266 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑥)) |
6 | 2 | notbid 657 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑥 ∈ (ℤ≥‘𝑀) ↔ ¬ 𝑀 ≤ 𝑥)) |
7 | 6 | biimprd 157 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑀 ≤ 𝑥 → ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
8 | 5, 7 | sylbid 149 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 → ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
9 | 3, 8 | orim12d 776 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 ≤ 𝑥 ∨ 𝑥 < 𝑀) → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀)))) |
10 | 1, 9 | mpd 13 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
11 | 10 | ex 114 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀)))) |
12 | 11 | decidr 13677 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 < clt 7933 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 DECIDin wdcin 13674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-dcin 13675 |
This theorem is referenced by: sumdc2 13680 |
Copyright terms: Public domain | W3C validator |