![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > uzdcinzz | GIF version |
Description: An upperset of integers is decidable in the integers. Reformulation of eluzdc 9628. (Contributed by Jim Kingdon, 18-Apr-2020.) (Revised by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
uzdcinzz | ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlelttric 9316 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 ≤ 𝑥 ∨ 𝑥 < 𝑀)) | |
2 | eluz 9559 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑥)) | |
3 | 2 | biimprd 158 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 ≤ 𝑥 → 𝑥 ∈ (ℤ≥‘𝑀))) |
4 | zltnle 9317 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑥)) | |
5 | 4 | ancoms 268 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑥)) |
6 | 2 | notbid 668 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑥 ∈ (ℤ≥‘𝑀) ↔ ¬ 𝑀 ≤ 𝑥)) |
7 | 6 | biimprd 158 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑀 ≤ 𝑥 → ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
8 | 5, 7 | sylbid 150 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 → ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
9 | 3, 8 | orim12d 787 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 ≤ 𝑥 ∨ 𝑥 < 𝑀) → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀)))) |
10 | 1, 9 | mpd 13 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
11 | 10 | ex 115 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀)))) |
12 | 11 | decidr 14945 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5231 < clt 8010 ≤ cle 8011 ℤcz 9271 ℤ≥cuz 9546 DECIDin wdcin 14942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-addass 7931 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-0id 7937 ax-rnegex 7938 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-ltadd 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-inn 8938 df-n0 9195 df-z 9272 df-uz 9547 df-dcin 14943 |
This theorem is referenced by: sumdc2 14948 |
Copyright terms: Public domain | W3C validator |