![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > uzdcinzz | GIF version |
Description: An upperset of integers is decidable in the integers. Reformulation of eluzdc 9678. (Contributed by Jim Kingdon, 18-Apr-2020.) (Revised by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
uzdcinzz | ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlelttric 9365 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 ≤ 𝑥 ∨ 𝑥 < 𝑀)) | |
2 | eluz 9608 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑥)) | |
3 | 2 | biimprd 158 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 ≤ 𝑥 → 𝑥 ∈ (ℤ≥‘𝑀))) |
4 | zltnle 9366 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑥)) | |
5 | 4 | ancoms 268 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑥)) |
6 | 2 | notbid 668 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑥 ∈ (ℤ≥‘𝑀) ↔ ¬ 𝑀 ≤ 𝑥)) |
7 | 6 | biimprd 158 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑀 ≤ 𝑥 → ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
8 | 5, 7 | sylbid 150 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 → ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
9 | 3, 8 | orim12d 787 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 ≤ 𝑥 ∨ 𝑥 < 𝑀) → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀)))) |
10 | 1, 9 | mpd 13 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
11 | 10 | ex 115 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀)))) |
12 | 11 | decidr 15358 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 < clt 8056 ≤ cle 8057 ℤcz 9320 ℤ≥cuz 9595 DECIDin wdcin 15355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-dcin 15356 |
This theorem is referenced by: sumdc2 15361 |
Copyright terms: Public domain | W3C validator |