Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > uzdcinzz | GIF version |
Description: An upperset of integers is decidable in the integers. Reformulation of eluzdc 9562. (Contributed by Jim Kingdon, 18-Apr-2020.) (Revised by BJ, 19-Feb-2022.) |
Ref | Expression |
---|---|
uzdcinzz | ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlelttric 9250 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 ≤ 𝑥 ∨ 𝑥 < 𝑀)) | |
2 | eluz 9493 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑥)) | |
3 | 2 | biimprd 157 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀 ≤ 𝑥 → 𝑥 ∈ (ℤ≥‘𝑀))) |
4 | zltnle 9251 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑥)) | |
5 | 4 | ancoms 266 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑥)) |
6 | 2 | notbid 662 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑥 ∈ (ℤ≥‘𝑀) ↔ ¬ 𝑀 ≤ 𝑥)) |
7 | 6 | biimprd 157 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑀 ≤ 𝑥 → ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
8 | 5, 7 | sylbid 149 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 → ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
9 | 3, 8 | orim12d 781 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀 ≤ 𝑥 ∨ 𝑥 < 𝑀) → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀)))) |
10 | 1, 9 | mpd 13 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀))) |
11 | 10 | ex 114 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ (ℤ≥‘𝑀) ∨ ¬ 𝑥 ∈ (ℤ≥‘𝑀)))) |
12 | 11 | decidr 13796 | 1 ⊢ (𝑀 ∈ ℤ → (ℤ≥‘𝑀) DECIDin ℤ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 < clt 7947 ≤ cle 7948 ℤcz 9205 ℤ≥cuz 9480 DECIDin wdcin 13793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-ltadd 7883 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-inn 8872 df-n0 9129 df-z 9206 df-uz 9481 df-dcin 13794 |
This theorem is referenced by: sumdc2 13799 |
Copyright terms: Public domain | W3C validator |