Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  uzdcinzz GIF version

Theorem uzdcinzz 13833
Description: An upperset of integers is decidable in the integers. Reformulation of eluzdc 9569. (Contributed by Jim Kingdon, 18-Apr-2020.) (Revised by BJ, 19-Feb-2022.)
Assertion
Ref Expression
uzdcinzz (𝑀 ∈ ℤ → (ℤ𝑀) DECIDin ℤ)

Proof of Theorem uzdcinzz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlelttric 9257 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀𝑥𝑥 < 𝑀))
2 eluz 9500 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝑀) ↔ 𝑀𝑥))
32biimprd 157 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑀𝑥𝑥 ∈ (ℤ𝑀)))
4 zltnle 9258 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀𝑥))
54ancoms 266 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 ↔ ¬ 𝑀𝑥))
62notbid 662 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑥 ∈ (ℤ𝑀) ↔ ¬ 𝑀𝑥))
76biimprd 157 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (¬ 𝑀𝑥 → ¬ 𝑥 ∈ (ℤ𝑀)))
85, 7sylbid 149 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 < 𝑀 → ¬ 𝑥 ∈ (ℤ𝑀)))
93, 8orim12d 781 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑀𝑥𝑥 < 𝑀) → (𝑥 ∈ (ℤ𝑀) ∨ ¬ 𝑥 ∈ (ℤ𝑀))))
101, 9mpd 13 . . 3 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ𝑀) ∨ ¬ 𝑥 ∈ (ℤ𝑀)))
1110ex 114 . 2 (𝑀 ∈ ℤ → (𝑥 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ∨ ¬ 𝑥 ∈ (ℤ𝑀))))
1211decidr 13831 1 (𝑀 ∈ ℤ → (ℤ𝑀) DECIDin ℤ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  wcel 2141   class class class wbr 3989  cfv 5198   < clt 7954  cle 7955  cz 9212  cuz 9487   DECIDin wdcin 13828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-dcin 13829
This theorem is referenced by:  sumdc2  13834
  Copyright terms: Public domain W3C validator