ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-dm GIF version

Definition df-dm 4706
Description: Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, F = { 2 , 6 , 3 , 9 } dom F = { 2 , 3 } . Contrast with range (defined in df-rn 4707). For alternate definitions see dfdm2 5239, dfdm3 4886, and dfdm4 4892. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-dm dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-dm
StepHypRef Expression
1 cA . . 3 class 𝐴
21cdm 4696 . 2 class dom 𝐴
3 vx . . . . . 6 setvar 𝑥
43cv 1374 . . . . 5 class 𝑥
5 vy . . . . . 6 setvar 𝑦
65cv 1374 . . . . 5 class 𝑦
74, 6, 1wbr 4062 . . . 4 wff 𝑥𝐴𝑦
87, 5wex 1518 . . 3 wff 𝑦 𝑥𝐴𝑦
98, 3cab 2195 . 2 class {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
102, 9wceq 1375 1 wff dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Colors of variables: wff set class
This definition is referenced by:  dfdm3  4886  dfrn2  4887  dfdm4  4892  dfdmf  4893  eldmg  4895  dmun  4907  dm0rn0  4917  dmmrnm  4919  nfdm  4944  fliftf  5896
  Copyright terms: Public domain W3C validator