| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-dm | GIF version | ||
| Description: Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, F = { 〈 2 , 6 〉, 〈 3 , 9 〉 } → dom F = { 2 , 3 } . Contrast with range (defined in df-rn 4730). For alternate definitions see dfdm2 5263, dfdm3 4909, and dfdm4 4915. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-dm | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cdm 4719 | . 2 class dom 𝐴 |
| 3 | vx | . . . . . 6 setvar 𝑥 | |
| 4 | 3 | cv 1394 | . . . . 5 class 𝑥 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1394 | . . . . 5 class 𝑦 |
| 7 | 4, 6, 1 | wbr 4083 | . . . 4 wff 𝑥𝐴𝑦 |
| 8 | 7, 5 | wex 1538 | . . 3 wff ∃𝑦 𝑥𝐴𝑦 |
| 9 | 8, 3 | cab 2215 | . 2 class {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 10 | 2, 9 | wceq 1395 | 1 wff dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| Colors of variables: wff set class |
| This definition is referenced by: dfdm3 4909 dfrn2 4910 dfdm4 4915 dfdmf 4916 eldmg 4918 dmun 4930 dm0rn0 4940 dmmrnm 4943 nfdm 4968 fliftf 5929 |
| Copyright terms: Public domain | W3C validator |