ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-dm GIF version

Definition df-dm 4670
Description: Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, F = { 2 , 6 , 3 , 9 } dom F = { 2 , 3 } . Contrast with range (defined in df-rn 4671). For alternate definitions see dfdm2 5201, dfdm3 4850, and dfdm4 4855. The notation "dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
df-dm dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Detailed syntax breakdown of Definition df-dm
StepHypRef Expression
1 cA . . 3 class 𝐴
21cdm 4660 . 2 class dom 𝐴
3 vx . . . . . 6 setvar 𝑥
43cv 1363 . . . . 5 class 𝑥
5 vy . . . . . 6 setvar 𝑦
65cv 1363 . . . . 5 class 𝑦
74, 6, 1wbr 4030 . . . 4 wff 𝑥𝐴𝑦
87, 5wex 1503 . . 3 wff 𝑦 𝑥𝐴𝑦
98, 3cab 2179 . 2 class {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
102, 9wceq 1364 1 wff dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Colors of variables: wff set class
This definition is referenced by:  dfdm3  4850  dfrn2  4851  dfdm4  4855  dfdmf  4856  eldmg  4858  dmun  4870  dm0rn0  4880  dmmrnm  4882  nfdm  4907  fliftf  5843
  Copyright terms: Public domain W3C validator