ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmun GIF version

Theorem dmun 4811
Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmun dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)

Proof of Theorem dmun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unab 3389 . . 3 ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)}
2 brun 4033 . . . . . 6 (𝑦(𝐴𝐵)𝑥 ↔ (𝑦𝐴𝑥𝑦𝐵𝑥))
32exbii 1593 . . . . 5 (∃𝑥 𝑦(𝐴𝐵)𝑥 ↔ ∃𝑥(𝑦𝐴𝑥𝑦𝐵𝑥))
4 19.43 1616 . . . . 5 (∃𝑥(𝑦𝐴𝑥𝑦𝐵𝑥) ↔ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥))
53, 4bitr2i 184 . . . 4 ((∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥) ↔ ∃𝑥 𝑦(𝐴𝐵)𝑥)
65abbii 2282 . . 3 {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} = {𝑦 ∣ ∃𝑥 𝑦(𝐴𝐵)𝑥}
71, 6eqtri 2186 . 2 ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ ∃𝑥 𝑦(𝐴𝐵)𝑥}
8 df-dm 4614 . . 3 dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥}
9 df-dm 4614 . . 3 dom 𝐵 = {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}
108, 9uneq12i 3274 . 2 (dom 𝐴 ∪ dom 𝐵) = ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥})
11 df-dm 4614 . 2 dom (𝐴𝐵) = {𝑦 ∣ ∃𝑥 𝑦(𝐴𝐵)𝑥}
127, 10, 113eqtr4ri 2197 1 dom (𝐴𝐵) = (dom 𝐴 ∪ dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wo 698   = wceq 1343  wex 1480  {cab 2151  cun 3114   class class class wbr 3982  dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-br 3983  df-dm 4614
This theorem is referenced by:  rnun  5012  dmpropg  5076  dmtpop  5079  fntpg  5244  fnun  5294  sbthlemi5  6926  casedm  7051  djudm  7070  exmidfodomrlemim  7157  ennnfonelemhdmp1  12342  ennnfonelemkh  12345  strleund  12483  strleun  12484
  Copyright terms: Public domain W3C validator