ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmrnm GIF version

Theorem dmmrnm 4766
Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmmrnm (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴

Proof of Theorem dmmrnm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-dm 4557 . . . . 5 dom 𝐴 = {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}
21eleq2i 2207 . . . 4 (𝑥 ∈ dom 𝐴𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧})
32exbii 1585 . . 3 (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧})
4 abid 2128 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑧 𝑥𝐴𝑧)
54exbii 1585 . . 3 (∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
63, 5bitri 183 . 2 (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
7 dfrn2 4735 . . . . 5 ran 𝐴 = {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}
87eleq2i 2207 . . . 4 (𝑧 ∈ ran 𝐴𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧})
98exbii 1585 . . 3 (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧})
10 abid 2128 . . . . 5 (𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥 𝑥𝐴𝑧)
1110exbii 1585 . . . 4 (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑧𝑥 𝑥𝐴𝑧)
12 excom 1643 . . . 4 (∃𝑧𝑥 𝑥𝐴𝑧 ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
1311, 12bitri 183 . . 3 (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
149, 13bitri 183 . 2 (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
15 eleq1 2203 . . 3 (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐴𝑦 ∈ ran 𝐴))
1615cbvexv 1891 . 2 (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
176, 14, 163bitr2i 207 1 (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1469  wcel 1481  {cab 2126   class class class wbr 3937  dom cdm 4547  ran crn 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-cnv 4555  df-dm 4557  df-rn 4558
This theorem is referenced by:  rnsnm  5013  nninfall  13379
  Copyright terms: Public domain W3C validator