Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmmrnm | GIF version |
Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.) |
Ref | Expression |
---|---|
dmmrnm | ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 4614 | . . . . 5 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} | |
2 | 1 | eleq2i 2233 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}) |
3 | 2 | exbii 1593 | . . 3 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}) |
4 | abid 2153 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑧 𝑥𝐴𝑧) | |
5 | 4 | exbii 1593 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
6 | 3, 5 | bitri 183 | . 2 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
7 | dfrn2 4792 | . . . . 5 ⊢ ran 𝐴 = {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} | |
8 | 7 | eleq2i 2233 | . . . 4 ⊢ (𝑧 ∈ ran 𝐴 ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}) |
9 | 8 | exbii 1593 | . . 3 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}) |
10 | abid 2153 | . . . . 5 ⊢ (𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥 𝑥𝐴𝑧) | |
11 | 10 | exbii 1593 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑧∃𝑥 𝑥𝐴𝑧) |
12 | excom 1652 | . . . 4 ⊢ (∃𝑧∃𝑥 𝑥𝐴𝑧 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) | |
13 | 11, 12 | bitri 183 | . . 3 ⊢ (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
14 | 9, 13 | bitri 183 | . 2 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
15 | eleq1 2229 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐴 ↔ 𝑦 ∈ ran 𝐴)) | |
16 | 15 | cbvexv 1906 | . 2 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
17 | 6, 14, 16 | 3bitr2i 207 | 1 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1480 ∈ wcel 2136 {cab 2151 class class class wbr 3982 dom cdm 4604 ran crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: rnsnm 5070 nninfall 13889 |
Copyright terms: Public domain | W3C validator |