| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmrnm | GIF version | ||
| Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.) |
| Ref | Expression |
|---|---|
| dmmrnm | ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 4674 | . . . . 5 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} | |
| 2 | 1 | eleq2i 2263 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}) |
| 3 | 2 | exbii 1619 | . . 3 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}) |
| 4 | abid 2184 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑧 𝑥𝐴𝑧) | |
| 5 | 4 | exbii 1619 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 6 | 3, 5 | bitri 184 | . 2 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 7 | dfrn2 4855 | . . . . 5 ⊢ ran 𝐴 = {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} | |
| 8 | 7 | eleq2i 2263 | . . . 4 ⊢ (𝑧 ∈ ran 𝐴 ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}) |
| 9 | 8 | exbii 1619 | . . 3 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}) |
| 10 | abid 2184 | . . . . 5 ⊢ (𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥 𝑥𝐴𝑧) | |
| 11 | 10 | exbii 1619 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑧∃𝑥 𝑥𝐴𝑧) |
| 12 | excom 1678 | . . . 4 ⊢ (∃𝑧∃𝑥 𝑥𝐴𝑧 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) | |
| 13 | 11, 12 | bitri 184 | . . 3 ⊢ (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 14 | 9, 13 | bitri 184 | . 2 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 15 | eleq1 2259 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐴 ↔ 𝑦 ∈ ran 𝐴)) | |
| 16 | 15 | cbvexv 1933 | . 2 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| 17 | 6, 14, 16 | 3bitr2i 208 | 1 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1506 ∈ wcel 2167 {cab 2182 class class class wbr 4034 dom cdm 4664 ran crn 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 |
| This theorem is referenced by: rnsnm 5137 ghmrn 13463 nninfall 15740 |
| Copyright terms: Public domain | W3C validator |