| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmrnm | GIF version | ||
| Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.) |
| Ref | Expression |
|---|---|
| dmmrnm | ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 4685 | . . . . 5 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} | |
| 2 | 1 | eleq2i 2272 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}) |
| 3 | 2 | exbii 1628 | . . 3 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}) |
| 4 | abid 2193 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑧 𝑥𝐴𝑧) | |
| 5 | 4 | exbii 1628 | . . 3 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 6 | 3, 5 | bitri 184 | . 2 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 7 | dfrn2 4866 | . . . . 5 ⊢ ran 𝐴 = {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} | |
| 8 | 7 | eleq2i 2272 | . . . 4 ⊢ (𝑧 ∈ ran 𝐴 ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}) |
| 9 | 8 | exbii 1628 | . . 3 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}) |
| 10 | abid 2193 | . . . . 5 ⊢ (𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥 𝑥𝐴𝑧) | |
| 11 | 10 | exbii 1628 | . . . 4 ⊢ (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑧∃𝑥 𝑥𝐴𝑧) |
| 12 | excom 1687 | . . . 4 ⊢ (∃𝑧∃𝑥 𝑥𝐴𝑧 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) | |
| 13 | 11, 12 | bitri 184 | . . 3 ⊢ (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 14 | 9, 13 | bitri 184 | . 2 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑥∃𝑧 𝑥𝐴𝑧) |
| 15 | eleq1 2268 | . . 3 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐴 ↔ 𝑦 ∈ ran 𝐴)) | |
| 16 | 15 | cbvexv 1942 | . 2 ⊢ (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| 17 | 6, 14, 16 | 3bitr2i 208 | 1 ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1515 ∈ wcel 2176 {cab 2191 class class class wbr 4044 dom cdm 4675 ran crn 4676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-cnv 4683 df-dm 4685 df-rn 4686 |
| This theorem is referenced by: rnsnm 5149 ghmrn 13593 nninfall 15946 |
| Copyright terms: Public domain | W3C validator |