ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmrnm GIF version

Theorem dmmrnm 4830
Description: A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
Assertion
Ref Expression
dmmrnm (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴

Proof of Theorem dmmrnm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-dm 4621 . . . . 5 dom 𝐴 = {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧}
21eleq2i 2237 . . . 4 (𝑥 ∈ dom 𝐴𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧})
32exbii 1598 . . 3 (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧})
4 abid 2158 . . . 4 (𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑧 𝑥𝐴𝑧)
54exbii 1598 . . 3 (∃𝑥 𝑥 ∈ {𝑥 ∣ ∃𝑧 𝑥𝐴𝑧} ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
63, 5bitri 183 . 2 (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
7 dfrn2 4799 . . . . 5 ran 𝐴 = {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧}
87eleq2i 2237 . . . 4 (𝑧 ∈ ran 𝐴𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧})
98exbii 1598 . . 3 (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧})
10 abid 2158 . . . . 5 (𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥 𝑥𝐴𝑧)
1110exbii 1598 . . . 4 (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑧𝑥 𝑥𝐴𝑧)
12 excom 1657 . . . 4 (∃𝑧𝑥 𝑥𝐴𝑧 ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
1311, 12bitri 183 . . 3 (∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 𝑥𝐴𝑧} ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
149, 13bitri 183 . 2 (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑥𝑧 𝑥𝐴𝑧)
15 eleq1 2233 . . 3 (𝑧 = 𝑦 → (𝑧 ∈ ran 𝐴𝑦 ∈ ran 𝐴))
1615cbvexv 1911 . 2 (∃𝑧 𝑧 ∈ ran 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
176, 14, 163bitr2i 207 1 (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1485  wcel 2141  {cab 2156   class class class wbr 3989  dom cdm 4611  ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  rnsnm  5077  nninfall  14042
  Copyright terms: Public domain W3C validator