ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 GIF version

Theorem dfdm2 5119
Description: Alternate definition of domain df-dm 4595 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4770 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 5096 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2178 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 3782 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 3782 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 5117 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2180 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 4596 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2161 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 4857 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 4858 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 4777 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2181 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 3259 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 3250 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2183 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1335  cun 3100   cuni 3772  ccnv 4584  dom cdm 4585  ran crn 4586  ccom 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator