| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdm2 | GIF version | ||
| Description: Alternate definition of domain df-dm 4728 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
| Ref | Expression |
|---|---|
| dfdm2 | ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco 4906 | . . . . . 6 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ ◡◡𝐴) | |
| 2 | cocnvcnv2 5239 | . . . . . 6 ⊢ (◡𝐴 ∘ ◡◡𝐴) = (◡𝐴 ∘ 𝐴) | |
| 3 | 1, 2 | eqtri 2250 | . . . . 5 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ 𝐴) |
| 4 | 3 | unieqi 3897 | . . . 4 ⊢ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ (◡𝐴 ∘ 𝐴) |
| 5 | 4 | unieqi 3897 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ ∪ (◡𝐴 ∘ 𝐴) |
| 6 | unidmrn 5260 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) | |
| 7 | 5, 6 | eqtr3i 2252 | . 2 ⊢ ∪ ∪ (◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) |
| 8 | df-rn 4729 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 9 | 8 | eqcomi 2233 | . . . 4 ⊢ dom ◡𝐴 = ran 𝐴 |
| 10 | dmcoeq 4996 | . . . 4 ⊢ (dom ◡𝐴 = ran 𝐴 → dom (◡𝐴 ∘ 𝐴) = dom 𝐴) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ dom (◡𝐴 ∘ 𝐴) = dom 𝐴 |
| 12 | rncoeq 4997 | . . . . 5 ⊢ (dom ◡𝐴 = ran 𝐴 → ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴) | |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴 |
| 14 | dfdm4 4914 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 15 | 13, 14 | eqtr4i 2253 | . . 3 ⊢ ran (◡𝐴 ∘ 𝐴) = dom 𝐴 |
| 16 | 11, 15 | uneq12i 3356 | . 2 ⊢ (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) = (dom 𝐴 ∪ dom 𝐴) |
| 17 | unidm 3347 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐴) = dom 𝐴 | |
| 18 | 7, 16, 17 | 3eqtrri 2255 | 1 ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 ∪ cuni 3887 ◡ccnv 4717 dom cdm 4718 ran crn 4719 ∘ ccom 4722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |