| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdm2 | GIF version | ||
| Description: Alternate definition of domain df-dm 4693 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
| Ref | Expression |
|---|---|
| dfdm2 | ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco 4871 | . . . . . 6 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ ◡◡𝐴) | |
| 2 | cocnvcnv2 5203 | . . . . . 6 ⊢ (◡𝐴 ∘ ◡◡𝐴) = (◡𝐴 ∘ 𝐴) | |
| 3 | 1, 2 | eqtri 2227 | . . . . 5 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ 𝐴) |
| 4 | 3 | unieqi 3866 | . . . 4 ⊢ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ (◡𝐴 ∘ 𝐴) |
| 5 | 4 | unieqi 3866 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ ∪ (◡𝐴 ∘ 𝐴) |
| 6 | unidmrn 5224 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) | |
| 7 | 5, 6 | eqtr3i 2229 | . 2 ⊢ ∪ ∪ (◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) |
| 8 | df-rn 4694 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 9 | 8 | eqcomi 2210 | . . . 4 ⊢ dom ◡𝐴 = ran 𝐴 |
| 10 | dmcoeq 4960 | . . . 4 ⊢ (dom ◡𝐴 = ran 𝐴 → dom (◡𝐴 ∘ 𝐴) = dom 𝐴) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ dom (◡𝐴 ∘ 𝐴) = dom 𝐴 |
| 12 | rncoeq 4961 | . . . . 5 ⊢ (dom ◡𝐴 = ran 𝐴 → ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴) | |
| 13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴 |
| 14 | dfdm4 4879 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 15 | 13, 14 | eqtr4i 2230 | . . 3 ⊢ ran (◡𝐴 ∘ 𝐴) = dom 𝐴 |
| 16 | 11, 15 | uneq12i 3329 | . 2 ⊢ (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) = (dom 𝐴 ∪ dom 𝐴) |
| 17 | unidm 3320 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐴) = dom 𝐴 | |
| 18 | 7, 16, 17 | 3eqtrri 2232 | 1 ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3168 ∪ cuni 3856 ◡ccnv 4682 dom cdm 4683 ran crn 4684 ∘ ccom 4687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |