ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 GIF version

Theorem dfdm2 5226
Description: Alternate definition of domain df-dm 4693 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4871 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 5203 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2227 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 3866 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 3866 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 5224 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2229 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 4694 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2210 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 4960 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 4961 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 4879 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2230 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 3329 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 3320 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2232 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3168   cuni 3856  ccnv 4682  dom cdm 4683  ran crn 4684  ccom 4687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator