ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 GIF version

Theorem dfdm2 5145
Description: Alternate definition of domain df-dm 4621 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4796 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 5122 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2191 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 3806 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 3806 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 5143 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2193 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 4622 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2174 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 4883 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 4884 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 4803 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2194 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 3279 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 3270 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2196 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  cun 3119   cuni 3796  ccnv 4610  dom cdm 4611  ran crn 4612  ccom 4615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator