Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfdm2 | GIF version |
Description: Alternate definition of domain df-dm 4621 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
Ref | Expression |
---|---|
dfdm2 | ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 4796 | . . . . . 6 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ ◡◡𝐴) | |
2 | cocnvcnv2 5122 | . . . . . 6 ⊢ (◡𝐴 ∘ ◡◡𝐴) = (◡𝐴 ∘ 𝐴) | |
3 | 1, 2 | eqtri 2191 | . . . . 5 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ 𝐴) |
4 | 3 | unieqi 3806 | . . . 4 ⊢ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ (◡𝐴 ∘ 𝐴) |
5 | 4 | unieqi 3806 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ ∪ (◡𝐴 ∘ 𝐴) |
6 | unidmrn 5143 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) | |
7 | 5, 6 | eqtr3i 2193 | . 2 ⊢ ∪ ∪ (◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) |
8 | df-rn 4622 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
9 | 8 | eqcomi 2174 | . . . 4 ⊢ dom ◡𝐴 = ran 𝐴 |
10 | dmcoeq 4883 | . . . 4 ⊢ (dom ◡𝐴 = ran 𝐴 → dom (◡𝐴 ∘ 𝐴) = dom 𝐴) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ dom (◡𝐴 ∘ 𝐴) = dom 𝐴 |
12 | rncoeq 4884 | . . . . 5 ⊢ (dom ◡𝐴 = ran 𝐴 → ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴) | |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴 |
14 | dfdm4 4803 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
15 | 13, 14 | eqtr4i 2194 | . . 3 ⊢ ran (◡𝐴 ∘ 𝐴) = dom 𝐴 |
16 | 11, 15 | uneq12i 3279 | . 2 ⊢ (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) = (dom 𝐴 ∪ dom 𝐴) |
17 | unidm 3270 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐴) = dom 𝐴 | |
18 | 7, 16, 17 | 3eqtrri 2196 | 1 ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∪ cun 3119 ∪ cuni 3796 ◡ccnv 4610 dom cdm 4611 ran crn 4612 ∘ ccom 4615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |