ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 GIF version

Theorem dfdm2 5138
Description: Alternate definition of domain df-dm 4614 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4789 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 5115 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2186 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 3799 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 3799 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 5136 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2188 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 4615 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2169 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 4876 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 4877 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 4796 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2189 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 3274 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 3265 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2191 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  cun 3114   cuni 3789  ccnv 4603  dom cdm 4604  ran crn 4605  ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator