ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 GIF version

Theorem dfdm2 5262
Description: Alternate definition of domain df-dm 4728 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4906 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 5239 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2250 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 3897 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 3897 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 5260 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2252 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 4729 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2233 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 4996 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 4997 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 4914 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2253 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 3356 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 3347 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2255 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cun 3195   cuni 3887  ccnv 4717  dom cdm 4718  ran crn 4719  ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator