| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdm3 | GIF version | ||
| Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm3 | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 4693 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 2 | df-br 4052 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
| 3 | 2 | exbii 1629 | . . 3 ⊢ (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 4 | 3 | abbii 2322 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
| 5 | 1, 4 | eqtri 2227 | 1 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∃wex 1516 ∈ wcel 2177 {cab 2192 〈cop 3641 class class class wbr 4051 dom cdm 4683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-br 4052 df-dm 4693 |
| This theorem is referenced by: csbdmg 4881 |
| Copyright terms: Public domain | W3C validator |