ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm3 GIF version

Theorem dfdm3 4873
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm3 dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfdm3
StepHypRef Expression
1 df-dm 4693 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
2 df-br 4052 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32exbii 1629 . . 3 (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
43abbii 2322 . 2 {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
51, 4eqtri 2227 1 dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wex 1516  wcel 2177  {cab 2192  cop 3641   class class class wbr 4051  dom cdm 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-br 4052  df-dm 4693
This theorem is referenced by:  csbdmg  4881
  Copyright terms: Public domain W3C validator