ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm3 GIF version

Theorem dfdm3 4849
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm3 dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfdm3
StepHypRef Expression
1 df-dm 4669 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
2 df-br 4030 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
32exbii 1616 . . 3 (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
43abbii 2309 . 2 {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
51, 4eqtri 2214 1 dom 𝐴 = {𝑥 ∣ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wex 1503  wcel 2164  {cab 2179  cop 3621   class class class wbr 4029  dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-br 4030  df-dm 4669
This theorem is referenced by:  csbdmg  4856
  Copyright terms: Public domain W3C validator