Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfdm3 | GIF version |
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm3 | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 4614 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
2 | df-br 3983 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
3 | 2 | exbii 1593 | . . 3 ⊢ (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
4 | 3 | abbii 2282 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
5 | 1, 4 | eqtri 2186 | 1 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 〈cop 3579 class class class wbr 3982 dom cdm 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-br 3983 df-dm 4614 |
This theorem is referenced by: csbdmg 4798 |
Copyright terms: Public domain | W3C validator |