![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfdm3 | GIF version |
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm3 | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 4638 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
2 | df-br 4006 | . . . 4 ⊢ (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴) | |
3 | 2 | exbii 1605 | . . 3 ⊢ (∃𝑦 𝑥𝐴𝑦 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
4 | 3 | abbii 2293 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} = {𝑥 ∣ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴} |
5 | 1, 4 | eqtri 2198 | 1 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 ⟨cop 3597 class class class wbr 4005 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-br 4006 df-dm 4638 |
This theorem is referenced by: csbdmg 4823 |
Copyright terms: Public domain | W3C validator |