ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftf GIF version

Theorem fliftf 5846
Description: The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftf (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋𝐴)⟶𝑆))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftf
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝜑 ∧ Fun 𝐹) → Fun 𝐹)
2 flift.1 . . . . . . . . . . 11 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
3 flift.2 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝐴𝑅)
4 flift.3 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝐵𝑆)
52, 3, 4fliftel 5840 . . . . . . . . . 10 (𝜑 → (𝑦𝐹𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵)))
65exbidv 1839 . . . . . . . . 9 (𝜑 → (∃𝑧 𝑦𝐹𝑧 ↔ ∃𝑧𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵)))
76adantr 276 . . . . . . . 8 ((𝜑 ∧ Fun 𝐹) → (∃𝑧 𝑦𝐹𝑧 ↔ ∃𝑧𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵)))
8 rexcom4 2786 . . . . . . . . 9 (∃𝑥𝑋𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ ∃𝑧𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵))
9 19.42v 1921 . . . . . . . . . . . 12 (∃𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ (𝑦 = 𝐴 ∧ ∃𝑧 𝑧 = 𝐵))
10 elisset 2777 . . . . . . . . . . . . . 14 (𝐵𝑆 → ∃𝑧 𝑧 = 𝐵)
114, 10syl 14 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ∃𝑧 𝑧 = 𝐵)
1211biantrud 304 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → (𝑦 = 𝐴 ↔ (𝑦 = 𝐴 ∧ ∃𝑧 𝑧 = 𝐵)))
139, 12bitr4id 199 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (∃𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ 𝑦 = 𝐴))
1413rexbidva 2494 . . . . . . . . . 10 (𝜑 → (∃𝑥𝑋𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ ∃𝑥𝑋 𝑦 = 𝐴))
1514adantr 276 . . . . . . . . 9 ((𝜑 ∧ Fun 𝐹) → (∃𝑥𝑋𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ ∃𝑥𝑋 𝑦 = 𝐴))
168, 15bitr3id 194 . . . . . . . 8 ((𝜑 ∧ Fun 𝐹) → (∃𝑧𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵) ↔ ∃𝑥𝑋 𝑦 = 𝐴))
177, 16bitrd 188 . . . . . . 7 ((𝜑 ∧ Fun 𝐹) → (∃𝑧 𝑦𝐹𝑧 ↔ ∃𝑥𝑋 𝑦 = 𝐴))
1817abbidv 2314 . . . . . 6 ((𝜑 ∧ Fun 𝐹) → {𝑦 ∣ ∃𝑧 𝑦𝐹𝑧} = {𝑦 ∣ ∃𝑥𝑋 𝑦 = 𝐴})
19 df-dm 4673 . . . . . 6 dom 𝐹 = {𝑦 ∣ ∃𝑧 𝑦𝐹𝑧}
20 eqid 2196 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
2120rnmpt 4914 . . . . . 6 ran (𝑥𝑋𝐴) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = 𝐴}
2218, 19, 213eqtr4g 2254 . . . . 5 ((𝜑 ∧ Fun 𝐹) → dom 𝐹 = ran (𝑥𝑋𝐴))
23 df-fn 5261 . . . . 5 (𝐹 Fn ran (𝑥𝑋𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = ran (𝑥𝑋𝐴)))
241, 22, 23sylanbrc 417 . . . 4 ((𝜑 ∧ Fun 𝐹) → 𝐹 Fn ran (𝑥𝑋𝐴))
252, 3, 4fliftrel 5839 . . . . . . 7 (𝜑𝐹 ⊆ (𝑅 × 𝑆))
2625adantr 276 . . . . . 6 ((𝜑 ∧ Fun 𝐹) → 𝐹 ⊆ (𝑅 × 𝑆))
27 rnss 4896 . . . . . 6 (𝐹 ⊆ (𝑅 × 𝑆) → ran 𝐹 ⊆ ran (𝑅 × 𝑆))
2826, 27syl 14 . . . . 5 ((𝜑 ∧ Fun 𝐹) → ran 𝐹 ⊆ ran (𝑅 × 𝑆))
29 rnxpss 5101 . . . . 5 ran (𝑅 × 𝑆) ⊆ 𝑆
3028, 29sstrdi 3195 . . . 4 ((𝜑 ∧ Fun 𝐹) → ran 𝐹𝑆)
31 df-f 5262 . . . 4 (𝐹:ran (𝑥𝑋𝐴)⟶𝑆 ↔ (𝐹 Fn ran (𝑥𝑋𝐴) ∧ ran 𝐹𝑆))
3224, 30, 31sylanbrc 417 . . 3 ((𝜑 ∧ Fun 𝐹) → 𝐹:ran (𝑥𝑋𝐴)⟶𝑆)
3332ex 115 . 2 (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋𝐴)⟶𝑆))
34 ffun 5410 . 2 (𝐹:ran (𝑥𝑋𝐴)⟶𝑆 → Fun 𝐹)
3533, 34impbid1 142 1 (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋𝐴)⟶𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wrex 2476  wss 3157  cop 3625   class class class wbr 4033  cmpt 4094   × cxp 4661  dom cdm 4663  ran crn 4664  Fun wfun 5252   Fn wfn 5253  wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by:  qliftf  6679
  Copyright terms: Public domain W3C validator