ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn2 GIF version

Theorem dfrn2 4808
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 4631 . 2 ran 𝐴 = dom 𝐴
2 df-dm 4630 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥}
3 vex 2738 . . . . 5 𝑦 ∈ V
4 vex 2738 . . . . 5 𝑥 ∈ V
53, 4brcnv 4803 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
65exbii 1603 . . 3 (∃𝑥 𝑦𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦)
76abbii 2291 . 2 {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
81, 2, 73eqtri 2200 1 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wex 1490  {cab 2161   class class class wbr 3998  ccnv 4619  dom cdm 4620  ran crn 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-cnv 4628  df-dm 4630  df-rn 4631
This theorem is referenced by:  dfrn3  4809  dfdm4  4812  dm0rn0  4837  dmmrnm  4839  dfrnf  4861  dfima2  4965  funcnv3  5270
  Copyright terms: Public domain W3C validator