| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrn2 | GIF version | ||
| Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrn2 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 4674 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | df-dm 4673 | . 2 ⊢ dom ◡𝐴 = {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} | |
| 3 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | brcnv 4849 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 6 | 5 | exbii 1619 | . . 3 ⊢ (∃𝑥 𝑦◡𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦) |
| 7 | 6 | abbii 2312 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| 8 | 1, 2, 7 | 3eqtri 2221 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∃wex 1506 {cab 2182 class class class wbr 4033 ◡ccnv 4662 dom cdm 4663 ran crn 4664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 |
| This theorem is referenced by: dfrn3 4855 dfdm4 4858 dm0rn0 4883 dmmrnm 4885 dfrnf 4907 dfima2 5011 funcnv3 5320 |
| Copyright terms: Public domain | W3C validator |