![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrn2 | GIF version |
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfrn2 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 4447 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
2 | df-dm 4446 | . 2 ⊢ dom ◡𝐴 = {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} | |
3 | vex 2622 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | vex 2622 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | brcnv 4615 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
6 | 5 | exbii 1541 | . . 3 ⊢ (∃𝑥 𝑦◡𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦) |
7 | 6 | abbii 2203 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
8 | 1, 2, 7 | 3eqtri 2112 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∃wex 1426 {cab 2074 class class class wbr 3843 ◡ccnv 4435 dom cdm 4436 ran crn 4437 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-br 3844 df-opab 3898 df-cnv 4444 df-dm 4446 df-rn 4447 |
This theorem is referenced by: dfrn3 4621 dfdm4 4624 dm0rn0 4649 dmmrnm 4651 dfrnf 4672 dfima2 4771 funcnv3 5070 |
Copyright terms: Public domain | W3C validator |