| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrn2 | GIF version | ||
| Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrn2 | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 4727 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 2 | df-dm 4726 | . 2 ⊢ dom ◡𝐴 = {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} | |
| 3 | vex 2802 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | brcnv 4902 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 6 | 5 | exbii 1651 | . . 3 ⊢ (∃𝑥 𝑦◡𝐴𝑥 ↔ ∃𝑥 𝑥𝐴𝑦) |
| 7 | 6 | abbii 2345 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑦◡𝐴𝑥} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| 8 | 1, 2, 7 | 3eqtri 2254 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∃wex 1538 {cab 2215 class class class wbr 4082 ◡ccnv 4715 dom cdm 4716 ran crn 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4724 df-dm 4726 df-rn 4727 |
| This theorem is referenced by: dfrn3 4908 dfdm4 4912 dm0rn0 4937 dmmrnm 4939 dfrnf 4961 dfima2 5066 funcnv3 5379 |
| Copyright terms: Public domain | W3C validator |