| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldmg | GIF version | ||
| Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| eldmg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4048 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝐴𝐵𝑦)) | |
| 2 | 1 | exbidv 1848 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| 3 | df-dm 4686 | . 2 ⊢ dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦} | |
| 4 | 2, 3 | elab2g 2920 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 class class class wbr 4045 dom cdm 4676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-dm 4686 |
| This theorem is referenced by: eldm2g 4875 eldm 4876 breldmg 4885 releldmb 4916 funeu 5297 fneu 5381 ndmfvg 5609 erref 6642 ecdmn0m 6666 shftdm 11166 dvcnp2cntop 15204 |
| Copyright terms: Public domain | W3C validator |