Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldmg | GIF version |
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
eldmg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3990 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝐴𝐵𝑦)) | |
2 | 1 | exbidv 1818 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦)) |
3 | df-dm 4619 | . 2 ⊢ dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦} | |
4 | 2, 3 | elab2g 2877 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 class class class wbr 3987 dom cdm 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-dm 4619 |
This theorem is referenced by: eldm2g 4805 eldm 4806 breldmg 4815 releldmb 4846 funeu 5221 fneu 5300 ndmfvg 5525 erref 6529 ecdmn0m 6551 shftdm 10773 dvcnp2cntop 13416 |
Copyright terms: Public domain | W3C validator |