ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 GIF version

Theorem dfdm4 4869
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4 dom 𝐴 = ran 𝐴

Proof of Theorem dfdm4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . 5 𝑦 ∈ V
2 vex 2774 . . . . 5 𝑥 ∈ V
31, 2brcnv 4860 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
43exbii 1627 . . 3 (∃𝑦 𝑦𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦)
54abbii 2320 . 2 {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
6 dfrn2 4865 . 2 ran 𝐴 = {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥}
7 df-dm 4684 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
85, 6, 73eqtr4ri 2236 1 dom 𝐴 = ran 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wex 1514  {cab 2190   class class class wbr 4043  ccnv 4673  dom cdm 4674  ran crn 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-cnv 4682  df-dm 4684  df-rn 4685
This theorem is referenced by:  dmcnvcnv  4901  rncnvcnv  4902  rncoeq  4951  cnvimass  5044  cnvimarndm  5045  dminxp  5126  cnvsn0  5150  rnsnopg  5160  dmmpt  5177  dmco  5190  cores2  5194  cnvssrndm  5203  cocnvres  5206  unidmrn  5214  dfdm2  5216  cnvexg  5219  funimacnv  5349  foimacnv  5539  funcocnv2  5546  fimacnv  5708  f1opw2  6151  fopwdom  6932  sbthlemi4  7061  exmidfodomrlemim  7308  hmeores  14729
  Copyright terms: Public domain W3C validator