ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 GIF version

Theorem dfdm4 4801
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4 dom 𝐴 = ran 𝐴

Proof of Theorem dfdm4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5 𝑦 ∈ V
2 vex 2733 . . . . 5 𝑥 ∈ V
31, 2brcnv 4792 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
43exbii 1598 . . 3 (∃𝑦 𝑦𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦)
54abbii 2286 . 2 {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
6 dfrn2 4797 . 2 ran 𝐴 = {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥}
7 df-dm 4619 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
85, 6, 73eqtr4ri 2202 1 dom 𝐴 = ran 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wex 1485  {cab 2156   class class class wbr 3987  ccnv 4608  dom cdm 4609  ran crn 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-cnv 4617  df-dm 4619  df-rn 4620
This theorem is referenced by:  dmcnvcnv  4833  rncnvcnv  4834  rncoeq  4882  cnvimass  4972  cnvimarndm  4973  dminxp  5053  cnvsn0  5077  rnsnopg  5087  dmmpt  5104  dmco  5117  cores2  5121  cnvssrndm  5130  cocnvres  5133  unidmrn  5141  dfdm2  5143  cnvexg  5146  funimacnv  5272  foimacnv  5458  funcocnv2  5465  fimacnv  5622  f1opw2  6052  fopwdom  6810  sbthlemi4  6933  exmidfodomrlemim  7165  hmeores  13068
  Copyright terms: Public domain W3C validator