![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfdm4 | GIF version |
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | brcnv 4846 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
4 | 3 | exbii 1616 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | 4 | abbii 2309 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
6 | dfrn2 4851 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
7 | df-dm 4670 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
8 | 5, 6, 7 | 3eqtr4ri 2225 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∃wex 1503 {cab 2179 class class class wbr 4030 ◡ccnv 4659 dom cdm 4660 ran crn 4661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-cnv 4668 df-dm 4670 df-rn 4671 |
This theorem is referenced by: dmcnvcnv 4887 rncnvcnv 4888 rncoeq 4936 cnvimass 5029 cnvimarndm 5030 dminxp 5111 cnvsn0 5135 rnsnopg 5145 dmmpt 5162 dmco 5175 cores2 5179 cnvssrndm 5188 cocnvres 5191 unidmrn 5199 dfdm2 5201 cnvexg 5204 funimacnv 5331 foimacnv 5519 funcocnv2 5526 fimacnv 5688 f1opw2 6126 fopwdom 6894 sbthlemi4 7021 exmidfodomrlemim 7263 hmeores 14494 |
Copyright terms: Public domain | W3C validator |