ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 GIF version

Theorem dfdm4 4803
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4 dom 𝐴 = ran 𝐴

Proof of Theorem dfdm4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5 𝑦 ∈ V
2 vex 2733 . . . . 5 𝑥 ∈ V
31, 2brcnv 4794 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
43exbii 1598 . . 3 (∃𝑦 𝑦𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦)
54abbii 2286 . 2 {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
6 dfrn2 4799 . 2 ran 𝐴 = {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥}
7 df-dm 4621 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
85, 6, 73eqtr4ri 2202 1 dom 𝐴 = ran 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wex 1485  {cab 2156   class class class wbr 3989  ccnv 4610  dom cdm 4611  ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  dmcnvcnv  4835  rncnvcnv  4836  rncoeq  4884  cnvimass  4974  cnvimarndm  4975  dminxp  5055  cnvsn0  5079  rnsnopg  5089  dmmpt  5106  dmco  5119  cores2  5123  cnvssrndm  5132  cocnvres  5135  unidmrn  5143  dfdm2  5145  cnvexg  5148  funimacnv  5274  foimacnv  5460  funcocnv2  5467  fimacnv  5625  f1opw2  6055  fopwdom  6814  sbthlemi4  6937  exmidfodomrlemim  7178  hmeores  13109
  Copyright terms: Public domain W3C validator