Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfdm4 | GIF version |
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | vex 2733 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | brcnv 4794 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
4 | 3 | exbii 1598 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | 4 | abbii 2286 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
6 | dfrn2 4799 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
7 | df-dm 4621 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
8 | 5, 6, 7 | 3eqtr4ri 2202 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∃wex 1485 {cab 2156 class class class wbr 3989 ◡ccnv 4610 dom cdm 4611 ran crn 4612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-cnv 4619 df-dm 4621 df-rn 4622 |
This theorem is referenced by: dmcnvcnv 4835 rncnvcnv 4836 rncoeq 4884 cnvimass 4974 cnvimarndm 4975 dminxp 5055 cnvsn0 5079 rnsnopg 5089 dmmpt 5106 dmco 5119 cores2 5123 cnvssrndm 5132 cocnvres 5135 unidmrn 5143 dfdm2 5145 cnvexg 5148 funimacnv 5274 foimacnv 5460 funcocnv2 5467 fimacnv 5625 f1opw2 6055 fopwdom 6814 sbthlemi4 6937 exmidfodomrlemim 7178 hmeores 13109 |
Copyright terms: Public domain | W3C validator |