ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 GIF version

Theorem dfdm4 4858
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4 dom 𝐴 = ran 𝐴

Proof of Theorem dfdm4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . 5 𝑦 ∈ V
2 vex 2766 . . . . 5 𝑥 ∈ V
31, 2brcnv 4849 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
43exbii 1619 . . 3 (∃𝑦 𝑦𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦)
54abbii 2312 . 2 {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
6 dfrn2 4854 . 2 ran 𝐴 = {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥}
7 df-dm 4673 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
85, 6, 73eqtr4ri 2228 1 dom 𝐴 = ran 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wex 1506  {cab 2182   class class class wbr 4033  ccnv 4662  dom cdm 4663  ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  dmcnvcnv  4890  rncnvcnv  4891  rncoeq  4939  cnvimass  5032  cnvimarndm  5033  dminxp  5114  cnvsn0  5138  rnsnopg  5148  dmmpt  5165  dmco  5178  cores2  5182  cnvssrndm  5191  cocnvres  5194  unidmrn  5202  dfdm2  5204  cnvexg  5207  funimacnv  5334  foimacnv  5522  funcocnv2  5529  fimacnv  5691  f1opw2  6129  fopwdom  6897  sbthlemi4  7026  exmidfodomrlemim  7268  hmeores  14551
  Copyright terms: Public domain W3C validator