| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdm4 | GIF version | ||
| Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 4874 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 4 | 3 | exbii 1629 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | abbii 2322 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 6 | dfrn2 4879 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
| 7 | df-dm 4698 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2238 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∃wex 1516 {cab 2192 class class class wbr 4054 ◡ccnv 4687 dom cdm 4688 ran crn 4689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-cnv 4696 df-dm 4698 df-rn 4699 |
| This theorem is referenced by: dmcnvcnv 4916 rncnvcnv 4917 rncoeq 4966 cnvimass 5059 cnvimarndm 5060 dminxp 5141 cnvsn0 5165 rnsnopg 5175 dmmpt 5192 dmco 5205 cores2 5209 cnvssrndm 5218 cocnvres 5221 unidmrn 5229 dfdm2 5231 cnvexg 5234 funimacnv 5364 foimacnv 5557 funcocnv2 5564 fimacnv 5727 f1opw2 6170 fopwdom 6953 sbthlemi4 7083 exmidfodomrlemim 7335 hmeores 14872 |
| Copyright terms: Public domain | W3C validator |