| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdm4 | GIF version | ||
| Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 4860 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 4 | 3 | exbii 1627 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | abbii 2320 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 6 | dfrn2 4865 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
| 7 | df-dm 4684 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2236 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∃wex 1514 {cab 2190 class class class wbr 4043 ◡ccnv 4673 dom cdm 4674 ran crn 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-cnv 4682 df-dm 4684 df-rn 4685 |
| This theorem is referenced by: dmcnvcnv 4901 rncnvcnv 4902 rncoeq 4951 cnvimass 5044 cnvimarndm 5045 dminxp 5126 cnvsn0 5150 rnsnopg 5160 dmmpt 5177 dmco 5190 cores2 5194 cnvssrndm 5203 cocnvres 5206 unidmrn 5214 dfdm2 5216 cnvexg 5219 funimacnv 5349 foimacnv 5539 funcocnv2 5546 fimacnv 5708 f1opw2 6151 fopwdom 6932 sbthlemi4 7061 exmidfodomrlemim 7308 hmeores 14729 |
| Copyright terms: Public domain | W3C validator |