ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 GIF version

Theorem dfdm4 4884
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4 dom 𝐴 = ran 𝐴

Proof of Theorem dfdm4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . . 5 𝑦 ∈ V
2 vex 2776 . . . . 5 𝑥 ∈ V
31, 2brcnv 4874 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
43exbii 1629 . . 3 (∃𝑦 𝑦𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦)
54abbii 2322 . 2 {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
6 dfrn2 4879 . 2 ran 𝐴 = {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥}
7 df-dm 4698 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
85, 6, 73eqtr4ri 2238 1 dom 𝐴 = ran 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wex 1516  {cab 2192   class class class wbr 4054  ccnv 4687  dom cdm 4688  ran crn 4689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-cnv 4696  df-dm 4698  df-rn 4699
This theorem is referenced by:  dmcnvcnv  4916  rncnvcnv  4917  rncoeq  4966  cnvimass  5059  cnvimarndm  5060  dminxp  5141  cnvsn0  5165  rnsnopg  5175  dmmpt  5192  dmco  5205  cores2  5209  cnvssrndm  5218  cocnvres  5221  unidmrn  5229  dfdm2  5231  cnvexg  5234  funimacnv  5364  foimacnv  5557  funcocnv2  5564  fimacnv  5727  f1opw2  6170  fopwdom  6953  sbthlemi4  7083  exmidfodomrlemim  7335  hmeores  14872
  Copyright terms: Public domain W3C validator