| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdm4 | GIF version | ||
| Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 4850 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 4 | 3 | exbii 1619 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | abbii 2312 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 6 | dfrn2 4855 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
| 7 | df-dm 4674 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2228 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∃wex 1506 {cab 2182 class class class wbr 4034 ◡ccnv 4663 dom cdm 4664 ran crn 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-cnv 4672 df-dm 4674 df-rn 4675 |
| This theorem is referenced by: dmcnvcnv 4891 rncnvcnv 4892 rncoeq 4940 cnvimass 5033 cnvimarndm 5034 dminxp 5115 cnvsn0 5139 rnsnopg 5149 dmmpt 5166 dmco 5179 cores2 5183 cnvssrndm 5192 cocnvres 5195 unidmrn 5203 dfdm2 5205 cnvexg 5208 funimacnv 5335 foimacnv 5525 funcocnv2 5532 fimacnv 5694 f1opw2 6133 fopwdom 6906 sbthlemi4 7035 exmidfodomrlemim 7280 hmeores 14635 |
| Copyright terms: Public domain | W3C validator |