ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm4 GIF version

Theorem dfdm4 4820
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm4 dom 𝐴 = ran 𝐴

Proof of Theorem dfdm4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2741 . . . . 5 𝑦 ∈ V
2 vex 2741 . . . . 5 𝑥 ∈ V
31, 2brcnv 4811 . . . 4 (𝑦𝐴𝑥𝑥𝐴𝑦)
43exbii 1605 . . 3 (∃𝑦 𝑦𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦)
54abbii 2293 . 2 {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
6 dfrn2 4816 . 2 ran 𝐴 = {𝑥 ∣ ∃𝑦 𝑦𝐴𝑥}
7 df-dm 4637 . 2 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
85, 6, 73eqtr4ri 2209 1 dom 𝐴 = ran 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wex 1492  {cab 2163   class class class wbr 4004  ccnv 4626  dom cdm 4627  ran crn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-cnv 4635  df-dm 4637  df-rn 4638
This theorem is referenced by:  dmcnvcnv  4852  rncnvcnv  4853  rncoeq  4901  cnvimass  4992  cnvimarndm  4993  dminxp  5074  cnvsn0  5098  rnsnopg  5108  dmmpt  5125  dmco  5138  cores2  5142  cnvssrndm  5151  cocnvres  5154  unidmrn  5162  dfdm2  5164  cnvexg  5167  funimacnv  5293  foimacnv  5480  funcocnv2  5487  fimacnv  5646  f1opw2  6077  fopwdom  6836  sbthlemi4  6959  exmidfodomrlemim  7200  hmeores  13818
  Copyright terms: Public domain W3C validator