ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdm GIF version

Theorem nfdm 4886
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1 𝑥𝐴
Assertion
Ref Expression
nfdm 𝑥dom 𝐴

Proof of Theorem nfdm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 4651 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧}
2 nfcv 2332 . . . . 5 𝑥𝑦
3 nfrn.1 . . . . 5 𝑥𝐴
4 nfcv 2332 . . . . 5 𝑥𝑧
52, 3, 4nfbr 4064 . . . 4 𝑥 𝑦𝐴𝑧
65nfex 1648 . . 3 𝑥𝑧 𝑦𝐴𝑧
76nfab 2337 . 2 𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧}
81, 7nfcxfr 2329 1 𝑥dom 𝐴
Colors of variables: wff set class
Syntax hints:  wex 1503  {cab 2175  wnfc 2319   class class class wbr 4018  dom cdm 4641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-dm 4651
This theorem is referenced by:  nfrn  4887  dmiin  4888  nffn  5327  ellimc3apf  14526
  Copyright terms: Public domain W3C validator