ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co GIF version

Definition df-co 4727
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 4722 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1394 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1394 . . . . . 6 class 𝑧
85, 7, 2wbr 4082 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1394 . . . . . 6 class 𝑦
117, 10, 1wbr 4082 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 104 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1538 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 4143 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1395 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff set class
This definition is referenced by:  coss1  4876  coss2  4877  nfco  4886  elco  4887  brcog  4888  cnvco  4906  cotr  5109  relco  5226  coundi  5229  coundir  5230  cores  5231  xpcom  5274  dffun2  5327  funco  5357  xpcomco  6981
  Copyright terms: Public domain W3C validator