ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co GIF version

Definition df-co 4613
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 4608 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1342 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1342 . . . . . 6 class 𝑧
85, 7, 2wbr 3982 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1342 . . . . . 6 class 𝑦
117, 10, 1wbr 3982 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 103 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1480 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 4042 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1343 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff set class
This definition is referenced by:  coss1  4759  coss2  4760  nfco  4769  elco  4770  brcog  4771  cnvco  4789  cotr  4985  relco  5102  coundi  5105  coundir  5106  cores  5107  xpcom  5150  dffun2  5198  funco  5228  xpcomco  6792
  Copyright terms: Public domain W3C validator