ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co GIF version

Definition df-co 4697
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 4692 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1372 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1372 . . . . . 6 class 𝑧
85, 7, 2wbr 4054 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1372 . . . . . 6 class 𝑦
117, 10, 1wbr 4054 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 104 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1516 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 4115 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1373 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff set class
This definition is referenced by:  coss1  4846  coss2  4847  nfco  4856  elco  4857  brcog  4858  cnvco  4876  cotr  5078  relco  5195  coundi  5198  coundir  5199  cores  5200  xpcom  5243  dffun2  5295  funco  5325  xpcomco  6941
  Copyright terms: Public domain W3C validator