ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co GIF version

Definition df-co 4683
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 4678 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1371 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1371 . . . . . 6 class 𝑧
85, 7, 2wbr 4043 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1371 . . . . . 6 class 𝑦
117, 10, 1wbr 4043 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 104 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1514 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 4103 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1372 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff set class
This definition is referenced by:  coss1  4832  coss2  4833  nfco  4842  elco  4843  brcog  4844  cnvco  4862  cotr  5063  relco  5180  coundi  5183  coundir  5184  cores  5185  xpcom  5228  dffun2  5280  funco  5310  xpcomco  6920
  Copyright terms: Public domain W3C validator