| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-co | GIF version | ||
| Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-co | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | ccom 4668 | . 2 class (𝐴 ∘ 𝐵) |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1363 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1363 | . . . . . 6 class 𝑧 |
| 8 | 5, 7, 2 | wbr 4034 | . . . . 5 wff 𝑥𝐵𝑧 |
| 9 | vy | . . . . . . 7 setvar 𝑦 | |
| 10 | 9 | cv 1363 | . . . . . 6 class 𝑦 |
| 11 | 7, 10, 1 | wbr 4034 | . . . . 5 wff 𝑧𝐴𝑦 |
| 12 | 8, 11 | wa 104 | . . . 4 wff (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 13 | 12, 6 | wex 1506 | . . 3 wff ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) |
| 14 | 13, 4, 9 | copab 4094 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| 15 | 3, 14 | wceq 1364 | 1 wff (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
| Colors of variables: wff set class |
| This definition is referenced by: coss1 4822 coss2 4823 nfco 4832 elco 4833 brcog 4834 cnvco 4852 cotr 5052 relco 5169 coundi 5172 coundir 5173 cores 5174 xpcom 5217 dffun2 5269 funco 5299 xpcomco 6894 |
| Copyright terms: Public domain | W3C validator |