ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-co GIF version

Definition df-co 4506
Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of , and calls the operation "relative product." (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-co (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Detailed syntax breakdown of Definition df-co
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2ccom 4501 . 2 class (𝐴𝐵)
4 vx . . . . . . 7 setvar 𝑥
54cv 1311 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1311 . . . . . 6 class 𝑧
85, 7, 2wbr 3893 . . . . 5 wff 𝑥𝐵𝑧
9 vy . . . . . . 7 setvar 𝑦
109cv 1311 . . . . . 6 class 𝑦
117, 10, 1wbr 3893 . . . . 5 wff 𝑧𝐴𝑦
128, 11wa 103 . . . 4 wff (𝑥𝐵𝑧𝑧𝐴𝑦)
1312, 6wex 1449 . . 3 wff 𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)
1413, 4, 9copab 3946 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
153, 14wceq 1312 1 wff (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
Colors of variables: wff set class
This definition is referenced by:  coss1  4652  coss2  4653  nfco  4662  elco  4663  brcog  4664  cnvco  4682  cotr  4876  relco  4993  coundi  4996  coundir  4997  cores  4998  xpcom  5041  dffun2  5089  funco  5119  xpcomco  6671
  Copyright terms: Public domain W3C validator