| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-co | GIF version | ||
| Description: Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses 𝐴 and 𝐵, uses a slash instead of ∘, and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.) | 
| Ref | Expression | 
|---|---|
| df-co | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | ccom 4667 | . 2 class (𝐴 ∘ 𝐵) | 
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1363 | . . . . . 6 class 𝑥 | 
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1363 | . . . . . 6 class 𝑧 | 
| 8 | 5, 7, 2 | wbr 4033 | . . . . 5 wff 𝑥𝐵𝑧 | 
| 9 | vy | . . . . . . 7 setvar 𝑦 | |
| 10 | 9 | cv 1363 | . . . . . 6 class 𝑦 | 
| 11 | 7, 10, 1 | wbr 4033 | . . . . 5 wff 𝑧𝐴𝑦 | 
| 12 | 8, 11 | wa 104 | . . . 4 wff (𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) | 
| 13 | 12, 6 | wex 1506 | . . 3 wff ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) | 
| 14 | 13, 4, 9 | copab 4093 | . 2 class {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | 
| 15 | 3, 14 | wceq 1364 | 1 wff (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} | 
| Colors of variables: wff set class | 
| This definition is referenced by: coss1 4821 coss2 4822 nfco 4831 elco 4832 brcog 4833 cnvco 4851 cotr 5051 relco 5168 coundi 5171 coundir 5172 cores 5173 xpcom 5216 dffun2 5268 funco 5298 xpcomco 6885 | 
| Copyright terms: Public domain | W3C validator |