ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdmf GIF version

Theorem dfdmf 4690
Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfdmf.1 𝑥𝐴
dfdmf.2 𝑦𝐴
Assertion
Ref Expression
dfdmf dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dfdmf
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 4507 . 2 dom 𝐴 = {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣}
2 nfcv 2253 . . . . 5 𝑦𝑤
3 dfdmf.2 . . . . 5 𝑦𝐴
4 nfcv 2253 . . . . 5 𝑦𝑣
52, 3, 4nfbr 3937 . . . 4 𝑦 𝑤𝐴𝑣
6 nfv 1489 . . . 4 𝑣 𝑤𝐴𝑦
7 breq2 3897 . . . 4 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvex 1710 . . 3 (∃𝑣 𝑤𝐴𝑣 ↔ ∃𝑦 𝑤𝐴𝑦)
98abbii 2228 . 2 {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} = {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦}
10 nfcv 2253 . . . . 5 𝑥𝑤
11 dfdmf.1 . . . . 5 𝑥𝐴
12 nfcv 2253 . . . . 5 𝑥𝑦
1310, 11, 12nfbr 3937 . . . 4 𝑥 𝑤𝐴𝑦
1413nfex 1597 . . 3 𝑥𝑦 𝑤𝐴𝑦
15 nfv 1489 . . 3 𝑤𝑦 𝑥𝐴𝑦
16 breq1 3896 . . . 4 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
1716exbidv 1777 . . 3 (𝑤 = 𝑥 → (∃𝑦 𝑤𝐴𝑦 ↔ ∃𝑦 𝑥𝐴𝑦))
1814, 15, 17cbvab 2235 . 2 {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
191, 9, 183eqtri 2137 1 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1312  wex 1449  {cab 2099  wnfc 2240   class class class wbr 3893  dom cdm 4497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-un 3039  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-dm 4507
This theorem is referenced by:  dmopab  4708
  Copyright terms: Public domain W3C validator