ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdmf GIF version

Theorem dfdmf 4870
Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfdmf.1 𝑥𝐴
dfdmf.2 𝑦𝐴
Assertion
Ref Expression
dfdmf dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dfdmf
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 4684 . 2 dom 𝐴 = {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣}
2 nfcv 2347 . . . . 5 𝑦𝑤
3 dfdmf.2 . . . . 5 𝑦𝐴
4 nfcv 2347 . . . . 5 𝑦𝑣
52, 3, 4nfbr 4089 . . . 4 𝑦 𝑤𝐴𝑣
6 nfv 1550 . . . 4 𝑣 𝑤𝐴𝑦
7 breq2 4047 . . . 4 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvex 1778 . . 3 (∃𝑣 𝑤𝐴𝑣 ↔ ∃𝑦 𝑤𝐴𝑦)
98abbii 2320 . 2 {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} = {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦}
10 nfcv 2347 . . . . 5 𝑥𝑤
11 dfdmf.1 . . . . 5 𝑥𝐴
12 nfcv 2347 . . . . 5 𝑥𝑦
1310, 11, 12nfbr 4089 . . . 4 𝑥 𝑤𝐴𝑦
1413nfex 1659 . . 3 𝑥𝑦 𝑤𝐴𝑦
15 nfv 1550 . . 3 𝑤𝑦 𝑥𝐴𝑦
16 breq1 4046 . . . 4 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
1716exbidv 1847 . . 3 (𝑤 = 𝑥 → (∃𝑦 𝑤𝐴𝑦 ↔ ∃𝑦 𝑥𝐴𝑦))
1814, 15, 17cbvab 2328 . 2 {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
191, 9, 183eqtri 2229 1 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wex 1514  {cab 2190  wnfc 2334   class class class wbr 4043  dom cdm 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-dm 4684
This theorem is referenced by:  dmopab  4888
  Copyright terms: Public domain W3C validator