| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdmf | GIF version | ||
| Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dfdmf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfdmf.2 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| dfdmf | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 4673 | . 2 ⊢ dom 𝐴 = {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} | |
| 2 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 3 | dfdmf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 4 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑦𝑣 | |
| 5 | 2, 3, 4 | nfbr 4079 | . . . 4 ⊢ Ⅎ𝑦 𝑤𝐴𝑣 |
| 6 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑣 𝑤𝐴𝑦 | |
| 7 | breq2 4037 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑦)) | |
| 8 | 5, 6, 7 | cbvex 1770 | . . 3 ⊢ (∃𝑣 𝑤𝐴𝑣 ↔ ∃𝑦 𝑤𝐴𝑦) |
| 9 | 8 | abbii 2312 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} = {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} |
| 10 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 11 | dfdmf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 12 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 13 | 10, 11, 12 | nfbr 4079 | . . . 4 ⊢ Ⅎ𝑥 𝑤𝐴𝑦 |
| 14 | 13 | nfex 1651 | . . 3 ⊢ Ⅎ𝑥∃𝑦 𝑤𝐴𝑦 |
| 15 | nfv 1542 | . . 3 ⊢ Ⅎ𝑤∃𝑦 𝑥𝐴𝑦 | |
| 16 | breq1 4036 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝑤𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
| 17 | 16 | exbidv 1839 | . . 3 ⊢ (𝑤 = 𝑥 → (∃𝑦 𝑤𝐴𝑦 ↔ ∃𝑦 𝑥𝐴𝑦)) |
| 18 | 14, 15, 17 | cbvab 2320 | . 2 ⊢ {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 19 | 1, 9, 18 | 3eqtri 2221 | 1 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∃wex 1506 {cab 2182 Ⅎwnfc 2326 class class class wbr 4033 dom cdm 4663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-dm 4673 |
| This theorem is referenced by: dmopab 4877 |
| Copyright terms: Public domain | W3C validator |