| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdmf | GIF version | ||
| Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dfdmf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfdmf.2 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| dfdmf | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 4684 | . 2 ⊢ dom 𝐴 = {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} | |
| 2 | nfcv 2347 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 3 | dfdmf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 4 | nfcv 2347 | . . . . 5 ⊢ Ⅎ𝑦𝑣 | |
| 5 | 2, 3, 4 | nfbr 4089 | . . . 4 ⊢ Ⅎ𝑦 𝑤𝐴𝑣 |
| 6 | nfv 1550 | . . . 4 ⊢ Ⅎ𝑣 𝑤𝐴𝑦 | |
| 7 | breq2 4047 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑦)) | |
| 8 | 5, 6, 7 | cbvex 1778 | . . 3 ⊢ (∃𝑣 𝑤𝐴𝑣 ↔ ∃𝑦 𝑤𝐴𝑦) |
| 9 | 8 | abbii 2320 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} = {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} |
| 10 | nfcv 2347 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 11 | dfdmf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 12 | nfcv 2347 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 13 | 10, 11, 12 | nfbr 4089 | . . . 4 ⊢ Ⅎ𝑥 𝑤𝐴𝑦 |
| 14 | 13 | nfex 1659 | . . 3 ⊢ Ⅎ𝑥∃𝑦 𝑤𝐴𝑦 |
| 15 | nfv 1550 | . . 3 ⊢ Ⅎ𝑤∃𝑦 𝑥𝐴𝑦 | |
| 16 | breq1 4046 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝑤𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
| 17 | 16 | exbidv 1847 | . . 3 ⊢ (𝑤 = 𝑥 → (∃𝑦 𝑤𝐴𝑦 ↔ ∃𝑦 𝑥𝐴𝑦)) |
| 18 | 14, 15, 17 | cbvab 2328 | . 2 ⊢ {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 19 | 1, 9, 18 | 3eqtri 2229 | 1 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∃wex 1514 {cab 2190 Ⅎwnfc 2334 class class class wbr 4043 dom cdm 4674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-dm 4684 |
| This theorem is referenced by: dmopab 4888 |
| Copyright terms: Public domain | W3C validator |