![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-frec | GIF version |
Description: Define a recursive
definition generator on ω (the class of finite
ordinals) with characteristic function 𝐹 and initial value 𝐼.
This rather amazing operation allows us to define, with compact direct
definitions, functions that are usually defined in textbooks only with
indirect self-referencing recursive definitions. A recursive definition
requires advanced metalogic to justify - in particular, eliminating a
recursive definition is very difficult and often not even shown in
textbooks. On the other hand, the elimination of a direct definition is
a matter of simple mechanical substitution. The price paid is the
daunting complexity of our frec operation
(especially when df-recs 6358
that it is built on is also eliminated). But once we get past this
hurdle, definitions that would otherwise be recursive become relatively
simple; see frec0g 6450 and frecsuc 6460.
Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4636. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6461, this definition and df-irdg 6423 restricted to ω produce the same result. Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.) |
Ref | Expression |
---|---|
df-frec | ⊢ frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | cI | . . 3 class 𝐼 | |
3 | 1, 2 | cfrec 6443 | . 2 class frec(𝐹, 𝐼) |
4 | vg | . . . . 5 setvar 𝑔 | |
5 | cvv 2760 | . . . . 5 class V | |
6 | 4 | cv 1363 | . . . . . . . . . . 11 class 𝑔 |
7 | 6 | cdm 4659 | . . . . . . . . . 10 class dom 𝑔 |
8 | vm | . . . . . . . . . . . 12 setvar 𝑚 | |
9 | 8 | cv 1363 | . . . . . . . . . . 11 class 𝑚 |
10 | 9 | csuc 4396 | . . . . . . . . . 10 class suc 𝑚 |
11 | 7, 10 | wceq 1364 | . . . . . . . . 9 wff dom 𝑔 = suc 𝑚 |
12 | vx | . . . . . . . . . . 11 setvar 𝑥 | |
13 | 12 | cv 1363 | . . . . . . . . . 10 class 𝑥 |
14 | 9, 6 | cfv 5254 | . . . . . . . . . . 11 class (𝑔‘𝑚) |
15 | 14, 1 | cfv 5254 | . . . . . . . . . 10 class (𝐹‘(𝑔‘𝑚)) |
16 | 13, 15 | wcel 2164 | . . . . . . . . 9 wff 𝑥 ∈ (𝐹‘(𝑔‘𝑚)) |
17 | 11, 16 | wa 104 | . . . . . . . 8 wff (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) |
18 | com 4622 | . . . . . . . 8 class ω | |
19 | 17, 8, 18 | wrex 2473 | . . . . . . 7 wff ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) |
20 | c0 3446 | . . . . . . . . 9 class ∅ | |
21 | 7, 20 | wceq 1364 | . . . . . . . 8 wff dom 𝑔 = ∅ |
22 | 13, 2 | wcel 2164 | . . . . . . . 8 wff 𝑥 ∈ 𝐼 |
23 | 21, 22 | wa 104 | . . . . . . 7 wff (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼) |
24 | 19, 23 | wo 709 | . . . . . 6 wff (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼)) |
25 | 24, 12 | cab 2179 | . . . . 5 class {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))} |
26 | 4, 5, 25 | cmpt 4090 | . . . 4 class (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))}) |
27 | 26 | crecs 6357 | . . 3 class recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) |
28 | 27, 18 | cres 4661 | . 2 class (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
29 | 3, 28 | wceq 1364 | 1 wff frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
Colors of variables: wff set class |
This definition is referenced by: freceq1 6445 freceq2 6446 frecex 6447 frecfun 6448 nffrec 6449 frec0g 6450 frecfnom 6454 freccllem 6455 frecfcllem 6457 frecsuclem 6459 |
Copyright terms: Public domain | W3C validator |