ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-frec GIF version

Definition df-frec 6444
Description: Define a recursive definition generator on ω (the class of finite ordinals) with characteristic function 𝐹 and initial value 𝐼. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our frec operation (especially when df-recs 6358 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple; see frec0g 6450 and frecsuc 6460.

Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4636. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6461, this definition and df-irdg 6423 restricted to ω produce the same result.

Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)

Assertion
Ref Expression
df-frec frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))})) ↾ ω)
Distinct variable groups:   𝑥,𝑔,𝑚,𝐹   𝑥,𝐼,𝑔,𝑚

Detailed syntax breakdown of Definition df-frec
StepHypRef Expression
1 cF . . 3 class 𝐹
2 cI . . 3 class 𝐼
31, 2cfrec 6443 . 2 class frec(𝐹, 𝐼)
4 vg . . . . 5 setvar 𝑔
5 cvv 2760 . . . . 5 class V
64cv 1363 . . . . . . . . . . 11 class 𝑔
76cdm 4659 . . . . . . . . . 10 class dom 𝑔
8 vm . . . . . . . . . . . 12 setvar 𝑚
98cv 1363 . . . . . . . . . . 11 class 𝑚
109csuc 4396 . . . . . . . . . 10 class suc 𝑚
117, 10wceq 1364 . . . . . . . . 9 wff dom 𝑔 = suc 𝑚
12 vx . . . . . . . . . . 11 setvar 𝑥
1312cv 1363 . . . . . . . . . 10 class 𝑥
149, 6cfv 5254 . . . . . . . . . . 11 class (𝑔𝑚)
1514, 1cfv 5254 . . . . . . . . . 10 class (𝐹‘(𝑔𝑚))
1613, 15wcel 2164 . . . . . . . . 9 wff 𝑥 ∈ (𝐹‘(𝑔𝑚))
1711, 16wa 104 . . . . . . . 8 wff (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚)))
18 com 4622 . . . . . . . 8 class ω
1917, 8, 18wrex 2473 . . . . . . 7 wff 𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚)))
20 c0 3446 . . . . . . . . 9 class
217, 20wceq 1364 . . . . . . . 8 wff dom 𝑔 = ∅
2213, 2wcel 2164 . . . . . . . 8 wff 𝑥𝐼
2321, 22wa 104 . . . . . . 7 wff (dom 𝑔 = ∅ ∧ 𝑥𝐼)
2419, 23wo 709 . . . . . 6 wff (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))
2524, 12cab 2179 . . . . 5 class {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))}
264, 5, 25cmpt 4090 . . . 4 class (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))})
2726crecs 6357 . . 3 class recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))}))
2827, 18cres 4661 . 2 class (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))})) ↾ ω)
293, 28wceq 1364 1 wff frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐼))})) ↾ ω)
Colors of variables: wff set class
This definition is referenced by:  freceq1  6445  freceq2  6446  frecex  6447  frecfun  6448  nffrec  6449  frec0g  6450  frecfnom  6454  freccllem  6455  frecfcllem  6457  frecsuclem  6459
  Copyright terms: Public domain W3C validator