Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-frec | GIF version |
Description: Define a recursive
definition generator on ω (the class of finite
ordinals) with characteristic function 𝐹 and initial value 𝐼.
This rather amazing operation allows us to define, with compact direct
definitions, functions that are usually defined in textbooks only with
indirect self-referencing recursive definitions. A recursive definition
requires advanced metalogic to justify - in particular, eliminating a
recursive definition is very difficult and often not even shown in
textbooks. On the other hand, the elimination of a direct definition is
a matter of simple mechanical substitution. The price paid is the
daunting complexity of our frec operation
(especially when df-recs 6284
that it is built on is also eliminated). But once we get past this
hurdle, definitions that would otherwise be recursive become relatively
simple; see frec0g 6376 and frecsuc 6386.
Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4588. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6387, this definition and df-irdg 6349 restricted to ω produce the same result. Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.) |
Ref | Expression |
---|---|
df-frec | ⊢ frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | cI | . . 3 class 𝐼 | |
3 | 1, 2 | cfrec 6369 | . 2 class frec(𝐹, 𝐼) |
4 | vg | . . . . 5 setvar 𝑔 | |
5 | cvv 2730 | . . . . 5 class V | |
6 | 4 | cv 1347 | . . . . . . . . . . 11 class 𝑔 |
7 | 6 | cdm 4611 | . . . . . . . . . 10 class dom 𝑔 |
8 | vm | . . . . . . . . . . . 12 setvar 𝑚 | |
9 | 8 | cv 1347 | . . . . . . . . . . 11 class 𝑚 |
10 | 9 | csuc 4350 | . . . . . . . . . 10 class suc 𝑚 |
11 | 7, 10 | wceq 1348 | . . . . . . . . 9 wff dom 𝑔 = suc 𝑚 |
12 | vx | . . . . . . . . . . 11 setvar 𝑥 | |
13 | 12 | cv 1347 | . . . . . . . . . 10 class 𝑥 |
14 | 9, 6 | cfv 5198 | . . . . . . . . . . 11 class (𝑔‘𝑚) |
15 | 14, 1 | cfv 5198 | . . . . . . . . . 10 class (𝐹‘(𝑔‘𝑚)) |
16 | 13, 15 | wcel 2141 | . . . . . . . . 9 wff 𝑥 ∈ (𝐹‘(𝑔‘𝑚)) |
17 | 11, 16 | wa 103 | . . . . . . . 8 wff (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) |
18 | com 4574 | . . . . . . . 8 class ω | |
19 | 17, 8, 18 | wrex 2449 | . . . . . . 7 wff ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) |
20 | c0 3414 | . . . . . . . . 9 class ∅ | |
21 | 7, 20 | wceq 1348 | . . . . . . . 8 wff dom 𝑔 = ∅ |
22 | 13, 2 | wcel 2141 | . . . . . . . 8 wff 𝑥 ∈ 𝐼 |
23 | 21, 22 | wa 103 | . . . . . . 7 wff (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼) |
24 | 19, 23 | wo 703 | . . . . . 6 wff (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼)) |
25 | 24, 12 | cab 2156 | . . . . 5 class {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))} |
26 | 4, 5, 25 | cmpt 4050 | . . . 4 class (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))}) |
27 | 26 | crecs 6283 | . . 3 class recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) |
28 | 27, 18 | cres 4613 | . 2 class (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
29 | 3, 28 | wceq 1348 | 1 wff frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
Colors of variables: wff set class |
This definition is referenced by: freceq1 6371 freceq2 6372 frecex 6373 frecfun 6374 nffrec 6375 frec0g 6376 frecfnom 6380 freccllem 6381 frecfcllem 6383 frecsuclem 6385 |
Copyright terms: Public domain | W3C validator |