Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-frec | GIF version |
Description: Define a recursive
definition generator on ω (the class of finite
ordinals) with characteristic function 𝐹 and initial value 𝐼.
This rather amazing operation allows us to define, with compact direct
definitions, functions that are usually defined in textbooks only with
indirect self-referencing recursive definitions. A recursive definition
requires advanced metalogic to justify - in particular, eliminating a
recursive definition is very difficult and often not even shown in
textbooks. On the other hand, the elimination of a direct definition is
a matter of simple mechanical substitution. The price paid is the
daunting complexity of our frec operation
(especially when df-recs 6269
that it is built on is also eliminated). But once we get past this
hurdle, definitions that would otherwise be recursive become relatively
simple; see frec0g 6361 and frecsuc 6371.
Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4580. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6372, this definition and df-irdg 6334 restricted to ω produce the same result. Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.) |
Ref | Expression |
---|---|
df-frec | ⊢ frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class 𝐹 | |
2 | cI | . . 3 class 𝐼 | |
3 | 1, 2 | cfrec 6354 | . 2 class frec(𝐹, 𝐼) |
4 | vg | . . . . 5 setvar 𝑔 | |
5 | cvv 2725 | . . . . 5 class V | |
6 | 4 | cv 1342 | . . . . . . . . . . 11 class 𝑔 |
7 | 6 | cdm 4603 | . . . . . . . . . 10 class dom 𝑔 |
8 | vm | . . . . . . . . . . . 12 setvar 𝑚 | |
9 | 8 | cv 1342 | . . . . . . . . . . 11 class 𝑚 |
10 | 9 | csuc 4342 | . . . . . . . . . 10 class suc 𝑚 |
11 | 7, 10 | wceq 1343 | . . . . . . . . 9 wff dom 𝑔 = suc 𝑚 |
12 | vx | . . . . . . . . . . 11 setvar 𝑥 | |
13 | 12 | cv 1342 | . . . . . . . . . 10 class 𝑥 |
14 | 9, 6 | cfv 5187 | . . . . . . . . . . 11 class (𝑔‘𝑚) |
15 | 14, 1 | cfv 5187 | . . . . . . . . . 10 class (𝐹‘(𝑔‘𝑚)) |
16 | 13, 15 | wcel 2136 | . . . . . . . . 9 wff 𝑥 ∈ (𝐹‘(𝑔‘𝑚)) |
17 | 11, 16 | wa 103 | . . . . . . . 8 wff (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) |
18 | com 4566 | . . . . . . . 8 class ω | |
19 | 17, 8, 18 | wrex 2444 | . . . . . . 7 wff ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) |
20 | c0 3408 | . . . . . . . . 9 class ∅ | |
21 | 7, 20 | wceq 1343 | . . . . . . . 8 wff dom 𝑔 = ∅ |
22 | 13, 2 | wcel 2136 | . . . . . . . 8 wff 𝑥 ∈ 𝐼 |
23 | 21, 22 | wa 103 | . . . . . . 7 wff (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼) |
24 | 19, 23 | wo 698 | . . . . . 6 wff (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼)) |
25 | 24, 12 | cab 2151 | . . . . 5 class {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))} |
26 | 4, 5, 25 | cmpt 4042 | . . . 4 class (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))}) |
27 | 26 | crecs 6268 | . . 3 class recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) |
28 | 27, 18 | cres 4605 | . 2 class (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
29 | 3, 28 | wceq 1343 | 1 wff frec(𝐹, 𝐼) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐼))})) ↾ ω) |
Colors of variables: wff set class |
This definition is referenced by: freceq1 6356 freceq2 6357 frecex 6358 frecfun 6359 nffrec 6360 frec0g 6361 frecfnom 6365 freccllem 6366 frecfcllem 6368 frecsuclem 6370 |
Copyright terms: Public domain | W3C validator |