ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0suc GIF version

Theorem nn0suc 4581
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nn0suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2172 . . 3 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
2 eqeq1 2172 . . . 4 (𝑦 = ∅ → (𝑦 = suc 𝑥 ↔ ∅ = suc 𝑥))
32rexbidv 2467 . . 3 (𝑦 = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω ∅ = suc 𝑥))
41, 3orbi12d 783 . 2 (𝑦 = ∅ → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (∅ = ∅ ∨ ∃𝑥 ∈ ω ∅ = suc 𝑥)))
5 eqeq1 2172 . . 3 (𝑦 = 𝑧 → (𝑦 = ∅ ↔ 𝑧 = ∅))
6 eqeq1 2172 . . . 4 (𝑦 = 𝑧 → (𝑦 = suc 𝑥𝑧 = suc 𝑥))
76rexbidv 2467 . . 3 (𝑦 = 𝑧 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑧 = suc 𝑥))
85, 7orbi12d 783 . 2 (𝑦 = 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (𝑧 = ∅ ∨ ∃𝑥 ∈ ω 𝑧 = suc 𝑥)))
9 eqeq1 2172 . . 3 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
10 eqeq1 2172 . . . 4 (𝑦 = suc 𝑧 → (𝑦 = suc 𝑥 ↔ suc 𝑧 = suc 𝑥))
1110rexbidv 2467 . . 3 (𝑦 = suc 𝑧 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥))
129, 11orbi12d 783 . 2 (𝑦 = suc 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)))
13 eqeq1 2172 . . 3 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
14 eqeq1 2172 . . . 4 (𝑦 = 𝐴 → (𝑦 = suc 𝑥𝐴 = suc 𝑥))
1514rexbidv 2467 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
1613, 15orbi12d 783 . 2 (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
17 eqid 2165 . . 3 ∅ = ∅
1817orci 721 . 2 (∅ = ∅ ∨ ∃𝑥 ∈ ω ∅ = suc 𝑥)
19 eqid 2165 . . . . 5 suc 𝑧 = suc 𝑧
20 suceq 4380 . . . . . . 7 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2120eqeq2d 2177 . . . . . 6 (𝑥 = 𝑧 → (suc 𝑧 = suc 𝑥 ↔ suc 𝑧 = suc 𝑧))
2221rspcev 2830 . . . . 5 ((𝑧 ∈ ω ∧ suc 𝑧 = suc 𝑧) → ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)
2319, 22mpan2 422 . . . 4 (𝑧 ∈ ω → ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)
2423olcd 724 . . 3 (𝑧 ∈ ω → (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥))
2524a1d 22 . 2 (𝑧 ∈ ω → ((𝑧 = ∅ ∨ ∃𝑥 ∈ ω 𝑧 = suc 𝑥) → (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)))
264, 8, 12, 16, 18, 25finds 4577 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1343  wcel 2136  wrex 2445  c0 3409  suc csuc 4343  ωcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568
This theorem is referenced by:  nnsuc  4593  nnpredcl  4600  frecabcl  6367  nnsucuniel  6463  nneneq  6823  phpm  6831  dif1enen  6846  fin0  6851  fin0or  6852  diffisn  6859
  Copyright terms: Public domain W3C validator