ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0suc GIF version

Theorem nn0suc 4621
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nn0suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2196 . . 3 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
2 eqeq1 2196 . . . 4 (𝑦 = ∅ → (𝑦 = suc 𝑥 ↔ ∅ = suc 𝑥))
32rexbidv 2491 . . 3 (𝑦 = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω ∅ = suc 𝑥))
41, 3orbi12d 794 . 2 (𝑦 = ∅ → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (∅ = ∅ ∨ ∃𝑥 ∈ ω ∅ = suc 𝑥)))
5 eqeq1 2196 . . 3 (𝑦 = 𝑧 → (𝑦 = ∅ ↔ 𝑧 = ∅))
6 eqeq1 2196 . . . 4 (𝑦 = 𝑧 → (𝑦 = suc 𝑥𝑧 = suc 𝑥))
76rexbidv 2491 . . 3 (𝑦 = 𝑧 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑧 = suc 𝑥))
85, 7orbi12d 794 . 2 (𝑦 = 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (𝑧 = ∅ ∨ ∃𝑥 ∈ ω 𝑧 = suc 𝑥)))
9 eqeq1 2196 . . 3 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
10 eqeq1 2196 . . . 4 (𝑦 = suc 𝑧 → (𝑦 = suc 𝑥 ↔ suc 𝑧 = suc 𝑥))
1110rexbidv 2491 . . 3 (𝑦 = suc 𝑧 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥))
129, 11orbi12d 794 . 2 (𝑦 = suc 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)))
13 eqeq1 2196 . . 3 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
14 eqeq1 2196 . . . 4 (𝑦 = 𝐴 → (𝑦 = suc 𝑥𝐴 = suc 𝑥))
1514rexbidv 2491 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
1613, 15orbi12d 794 . 2 (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
17 eqid 2189 . . 3 ∅ = ∅
1817orci 732 . 2 (∅ = ∅ ∨ ∃𝑥 ∈ ω ∅ = suc 𝑥)
19 eqid 2189 . . . . 5 suc 𝑧 = suc 𝑧
20 suceq 4420 . . . . . . 7 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2120eqeq2d 2201 . . . . . 6 (𝑥 = 𝑧 → (suc 𝑧 = suc 𝑥 ↔ suc 𝑧 = suc 𝑧))
2221rspcev 2856 . . . . 5 ((𝑧 ∈ ω ∧ suc 𝑧 = suc 𝑧) → ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)
2319, 22mpan2 425 . . . 4 (𝑧 ∈ ω → ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)
2423olcd 735 . . 3 (𝑧 ∈ ω → (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥))
2524a1d 22 . 2 (𝑧 ∈ ω → ((𝑧 = ∅ ∨ ∃𝑥 ∈ ω 𝑧 = suc 𝑥) → (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)))
264, 8, 12, 16, 18, 25finds 4617 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wcel 2160  wrex 2469  c0 3437  suc csuc 4383  ωcom 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-int 3860  df-suc 4389  df-iom 4608
This theorem is referenced by:  nnsuc  4633  nnpredcl  4640  frecabcl  6424  nnsucuniel  6520  nneneq  6885  phpm  6893  dif1enen  6908  fin0  6913  fin0or  6914  diffisn  6921
  Copyright terms: Public domain W3C validator