ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0suc GIF version

Theorem nn0suc 4588
Description: A natural number is either 0 or a successor. Similar theorems for arbitrary sets or real numbers will not be provable (without the law of the excluded middle), but equality of natural numbers is decidable. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
nn0suc (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nn0suc
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2177 . . 3 (𝑦 = ∅ → (𝑦 = ∅ ↔ ∅ = ∅))
2 eqeq1 2177 . . . 4 (𝑦 = ∅ → (𝑦 = suc 𝑥 ↔ ∅ = suc 𝑥))
32rexbidv 2471 . . 3 (𝑦 = ∅ → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω ∅ = suc 𝑥))
41, 3orbi12d 788 . 2 (𝑦 = ∅ → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (∅ = ∅ ∨ ∃𝑥 ∈ ω ∅ = suc 𝑥)))
5 eqeq1 2177 . . 3 (𝑦 = 𝑧 → (𝑦 = ∅ ↔ 𝑧 = ∅))
6 eqeq1 2177 . . . 4 (𝑦 = 𝑧 → (𝑦 = suc 𝑥𝑧 = suc 𝑥))
76rexbidv 2471 . . 3 (𝑦 = 𝑧 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝑧 = suc 𝑥))
85, 7orbi12d 788 . 2 (𝑦 = 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (𝑧 = ∅ ∨ ∃𝑥 ∈ ω 𝑧 = suc 𝑥)))
9 eqeq1 2177 . . 3 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
10 eqeq1 2177 . . . 4 (𝑦 = suc 𝑧 → (𝑦 = suc 𝑥 ↔ suc 𝑧 = suc 𝑥))
1110rexbidv 2471 . . 3 (𝑦 = suc 𝑧 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥))
129, 11orbi12d 788 . 2 (𝑦 = suc 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)))
13 eqeq1 2177 . . 3 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
14 eqeq1 2177 . . . 4 (𝑦 = 𝐴 → (𝑦 = suc 𝑥𝐴 = suc 𝑥))
1514rexbidv 2471 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
1613, 15orbi12d 788 . 2 (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
17 eqid 2170 . . 3 ∅ = ∅
1817orci 726 . 2 (∅ = ∅ ∨ ∃𝑥 ∈ ω ∅ = suc 𝑥)
19 eqid 2170 . . . . 5 suc 𝑧 = suc 𝑧
20 suceq 4387 . . . . . . 7 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2120eqeq2d 2182 . . . . . 6 (𝑥 = 𝑧 → (suc 𝑧 = suc 𝑥 ↔ suc 𝑧 = suc 𝑧))
2221rspcev 2834 . . . . 5 ((𝑧 ∈ ω ∧ suc 𝑧 = suc 𝑧) → ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)
2319, 22mpan2 423 . . . 4 (𝑧 ∈ ω → ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)
2423olcd 729 . . 3 (𝑧 ∈ ω → (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥))
2524a1d 22 . 2 (𝑧 ∈ ω → ((𝑧 = ∅ ∨ ∃𝑥 ∈ ω 𝑧 = suc 𝑥) → (suc 𝑧 = ∅ ∨ ∃𝑥 ∈ ω suc 𝑧 = suc 𝑥)))
264, 8, 12, 16, 18, 25finds 4584 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703   = wceq 1348  wcel 2141  wrex 2449  c0 3414  suc csuc 4350  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575
This theorem is referenced by:  nnsuc  4600  nnpredcl  4607  frecabcl  6378  nnsucuniel  6474  nneneq  6835  phpm  6843  dif1enen  6858  fin0  6863  fin0or  6864  diffisn  6871
  Copyright terms: Public domain W3C validator