ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-frec Unicode version

Definition df-frec 6477
Description: Define a recursive definition generator on  om (the class of finite ordinals) with characteristic function  F and initial value  I. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our frec operation (especially when df-recs 6391 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple; see frec0g 6483 and frecsuc 6493.

Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4652. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6494, this definition and df-irdg 6456 restricted to  om produce the same result.

Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)

Assertion
Ref Expression
df-frec  |- frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Distinct variable groups:    x, g, m, F    x, I, g, m

Detailed syntax breakdown of Definition df-frec
StepHypRef Expression
1 cF . . 3  class  F
2 cI . . 3  class  I
31, 2cfrec 6476 . 2  class frec ( F ,  I )
4 vg . . . . 5  setvar  g
5 cvv 2772 . . . . 5  class  _V
64cv 1372 . . . . . . . . . . 11  class  g
76cdm 4675 . . . . . . . . . 10  class  dom  g
8 vm . . . . . . . . . . . 12  setvar  m
98cv 1372 . . . . . . . . . . 11  class  m
109csuc 4412 . . . . . . . . . 10  class  suc  m
117, 10wceq 1373 . . . . . . . . 9  wff  dom  g  =  suc  m
12 vx . . . . . . . . . . 11  setvar  x
1312cv 1372 . . . . . . . . . 10  class  x
149, 6cfv 5271 . . . . . . . . . . 11  class  ( g `
 m )
1514, 1cfv 5271 . . . . . . . . . 10  class  ( F `
 ( g `  m ) )
1613, 15wcel 2176 . . . . . . . . 9  wff  x  e.  ( F `  (
g `  m )
)
1711, 16wa 104 . . . . . . . 8  wff  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m ) ) )
18 com 4638 . . . . . . . 8  class  om
1917, 8, 18wrex 2485 . . . . . . 7  wff  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )
20 c0 3460 . . . . . . . . 9  class  (/)
217, 20wceq 1373 . . . . . . . 8  wff  dom  g  =  (/)
2213, 2wcel 2176 . . . . . . . 8  wff  x  e.  I
2321, 22wa 104 . . . . . . 7  wff  ( dom  g  =  (/)  /\  x  e.  I )
2419, 23wo 710 . . . . . 6  wff  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) )
2524, 12cab 2191 . . . . 5  class  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) }
264, 5, 25cmpt 4105 . . . 4  class  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } )
2726crecs 6390 . . 3  class recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )
2827, 18cres 4677 . 2  class  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
293, 28wceq 1373 1  wff frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Colors of variables: wff set class
This definition is referenced by:  freceq1  6478  freceq2  6479  frecex  6480  frecfun  6481  nffrec  6482  frec0g  6483  frecfnom  6487  freccllem  6488  frecfcllem  6490  frecsuclem  6492
  Copyright terms: Public domain W3C validator