ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-frec Unicode version

Definition df-frec 6479
Description: Define a recursive definition generator on  om (the class of finite ordinals) with characteristic function  F and initial value  I. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our frec operation (especially when df-recs 6393 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple; see frec0g 6485 and frecsuc 6495.

Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4653. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6496, this definition and df-irdg 6458 restricted to  om produce the same result.

Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)

Assertion
Ref Expression
df-frec  |- frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Distinct variable groups:    x, g, m, F    x, I, g, m

Detailed syntax breakdown of Definition df-frec
StepHypRef Expression
1 cF . . 3  class  F
2 cI . . 3  class  I
31, 2cfrec 6478 . 2  class frec ( F ,  I )
4 vg . . . . 5  setvar  g
5 cvv 2772 . . . . 5  class  _V
64cv 1372 . . . . . . . . . . 11  class  g
76cdm 4676 . . . . . . . . . 10  class  dom  g
8 vm . . . . . . . . . . . 12  setvar  m
98cv 1372 . . . . . . . . . . 11  class  m
109csuc 4413 . . . . . . . . . 10  class  suc  m
117, 10wceq 1373 . . . . . . . . 9  wff  dom  g  =  suc  m
12 vx . . . . . . . . . . 11  setvar  x
1312cv 1372 . . . . . . . . . 10  class  x
149, 6cfv 5272 . . . . . . . . . . 11  class  ( g `
 m )
1514, 1cfv 5272 . . . . . . . . . 10  class  ( F `
 ( g `  m ) )
1613, 15wcel 2176 . . . . . . . . 9  wff  x  e.  ( F `  (
g `  m )
)
1711, 16wa 104 . . . . . . . 8  wff  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m ) ) )
18 com 4639 . . . . . . . 8  class  om
1917, 8, 18wrex 2485 . . . . . . 7  wff  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )
20 c0 3460 . . . . . . . . 9  class  (/)
217, 20wceq 1373 . . . . . . . 8  wff  dom  g  =  (/)
2213, 2wcel 2176 . . . . . . . 8  wff  x  e.  I
2321, 22wa 104 . . . . . . 7  wff  ( dom  g  =  (/)  /\  x  e.  I )
2419, 23wo 710 . . . . . 6  wff  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) )
2524, 12cab 2191 . . . . 5  class  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) }
264, 5, 25cmpt 4106 . . . 4  class  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } )
2726crecs 6392 . . 3  class recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )
2827, 18cres 4678 . 2  class  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
293, 28wceq 1373 1  wff frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Colors of variables: wff set class
This definition is referenced by:  freceq1  6480  freceq2  6481  frecex  6482  frecfun  6483  nffrec  6484  frec0g  6485  frecfnom  6489  freccllem  6490  frecfcllem  6492  frecsuclem  6494
  Copyright terms: Public domain W3C validator