ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-frec Unicode version

Definition df-frec 6355
Description: Define a recursive definition generator on  om (the class of finite ordinals) with characteristic function  F and initial value  I. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our frec operation (especially when df-recs 6269 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple; see frec0g 6361 and frecsuc 6371.

Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4580. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6372, this definition and df-irdg 6334 restricted to  om produce the same result.

Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)

Assertion
Ref Expression
df-frec  |- frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Distinct variable groups:    x, g, m, F    x, I, g, m

Detailed syntax breakdown of Definition df-frec
StepHypRef Expression
1 cF . . 3  class  F
2 cI . . 3  class  I
31, 2cfrec 6354 . 2  class frec ( F ,  I )
4 vg . . . . 5  setvar  g
5 cvv 2725 . . . . 5  class  _V
64cv 1342 . . . . . . . . . . 11  class  g
76cdm 4603 . . . . . . . . . 10  class  dom  g
8 vm . . . . . . . . . . . 12  setvar  m
98cv 1342 . . . . . . . . . . 11  class  m
109csuc 4342 . . . . . . . . . 10  class  suc  m
117, 10wceq 1343 . . . . . . . . 9  wff  dom  g  =  suc  m
12 vx . . . . . . . . . . 11  setvar  x
1312cv 1342 . . . . . . . . . 10  class  x
149, 6cfv 5187 . . . . . . . . . . 11  class  ( g `
 m )
1514, 1cfv 5187 . . . . . . . . . 10  class  ( F `
 ( g `  m ) )
1613, 15wcel 2136 . . . . . . . . 9  wff  x  e.  ( F `  (
g `  m )
)
1711, 16wa 103 . . . . . . . 8  wff  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m ) ) )
18 com 4566 . . . . . . . 8  class  om
1917, 8, 18wrex 2444 . . . . . . 7  wff  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )
20 c0 3408 . . . . . . . . 9  class  (/)
217, 20wceq 1343 . . . . . . . 8  wff  dom  g  =  (/)
2213, 2wcel 2136 . . . . . . . 8  wff  x  e.  I
2321, 22wa 103 . . . . . . 7  wff  ( dom  g  =  (/)  /\  x  e.  I )
2419, 23wo 698 . . . . . 6  wff  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) )
2524, 12cab 2151 . . . . 5  class  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) }
264, 5, 25cmpt 4042 . . . 4  class  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } )
2726crecs 6268 . . 3  class recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )
2827, 18cres 4605 . 2  class  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
293, 28wceq 1343 1  wff frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Colors of variables: wff set class
This definition is referenced by:  freceq1  6356  freceq2  6357  frecex  6358  frecfun  6359  nffrec  6360  frec0g  6361  frecfnom  6365  freccllem  6366  frecfcllem  6368  frecsuclem  6370
  Copyright terms: Public domain W3C validator