ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-frec Unicode version

Definition df-frec 6458
Description: Define a recursive definition generator on  om (the class of finite ordinals) with characteristic function  F and initial value  I. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our frec operation (especially when df-recs 6372 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple; see frec0g 6464 and frecsuc 6474.

Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4641. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6475, this definition and df-irdg 6437 restricted to  om produce the same result.

Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)

Assertion
Ref Expression
df-frec  |- frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Distinct variable groups:    x, g, m, F    x, I, g, m

Detailed syntax breakdown of Definition df-frec
StepHypRef Expression
1 cF . . 3  class  F
2 cI . . 3  class  I
31, 2cfrec 6457 . 2  class frec ( F ,  I )
4 vg . . . . 5  setvar  g
5 cvv 2763 . . . . 5  class  _V
64cv 1363 . . . . . . . . . . 11  class  g
76cdm 4664 . . . . . . . . . 10  class  dom  g
8 vm . . . . . . . . . . . 12  setvar  m
98cv 1363 . . . . . . . . . . 11  class  m
109csuc 4401 . . . . . . . . . 10  class  suc  m
117, 10wceq 1364 . . . . . . . . 9  wff  dom  g  =  suc  m
12 vx . . . . . . . . . . 11  setvar  x
1312cv 1363 . . . . . . . . . 10  class  x
149, 6cfv 5259 . . . . . . . . . . 11  class  ( g `
 m )
1514, 1cfv 5259 . . . . . . . . . 10  class  ( F `
 ( g `  m ) )
1613, 15wcel 2167 . . . . . . . . 9  wff  x  e.  ( F `  (
g `  m )
)
1711, 16wa 104 . . . . . . . 8  wff  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m ) ) )
18 com 4627 . . . . . . . 8  class  om
1917, 8, 18wrex 2476 . . . . . . 7  wff  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )
20 c0 3451 . . . . . . . . 9  class  (/)
217, 20wceq 1364 . . . . . . . 8  wff  dom  g  =  (/)
2213, 2wcel 2167 . . . . . . . 8  wff  x  e.  I
2321, 22wa 104 . . . . . . 7  wff  ( dom  g  =  (/)  /\  x  e.  I )
2419, 23wo 709 . . . . . 6  wff  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) )
2524, 12cab 2182 . . . . 5  class  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) }
264, 5, 25cmpt 4095 . . . 4  class  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } )
2726crecs 6371 . . 3  class recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )
2827, 18cres 4666 . 2  class  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
293, 28wceq 1364 1  wff frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Colors of variables: wff set class
This definition is referenced by:  freceq1  6459  freceq2  6460  frecex  6461  frecfun  6462  nffrec  6463  frec0g  6464  frecfnom  6468  freccllem  6469  frecfcllem  6471  frecsuclem  6473
  Copyright terms: Public domain W3C validator