ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-frec Unicode version

Definition df-frec 6328
Description: Define a recursive definition generator on  om (the class of finite ordinals) with characteristic function  F and initial value  I. This rather amazing operation allows us to define, with compact direct definitions, functions that are usually defined in textbooks only with indirect self-referencing recursive definitions. A recursive definition requires advanced metalogic to justify - in particular, eliminating a recursive definition is very difficult and often not even shown in textbooks. On the other hand, the elimination of a direct definition is a matter of simple mechanical substitution. The price paid is the daunting complexity of our frec operation (especially when df-recs 6242 that it is built on is also eliminated). But once we get past this hurdle, definitions that would otherwise be recursive become relatively simple; see frec0g 6334 and frecsuc 6344.

Unlike with transfinite recursion, finite recurson can readily divide definitions and proofs into zero and successor cases, because even without excluded middle we have theorems such as nn0suc 4557. The analogous situation with transfinite recursion - being able to say that an ordinal is zero, successor, or limit - is enabled by excluded middle and thus is not available to us. For the characteristic functions which satisfy the conditions given at frecrdg 6345, this definition and df-irdg 6307 restricted to  om produce the same result.

Note: We introduce frec with the philosophical goal of being able to eliminate all definitions with direct mechanical substitution and to verify easily the soundness of definitions. Metamath itself has no built-in technical limitation that prevents multiple-part recursive definitions in the traditional textbook style. (Contributed by Mario Carneiro and Jim Kingdon, 10-Aug-2019.)

Assertion
Ref Expression
df-frec  |- frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Distinct variable groups:    x, g, m, F    x, I, g, m

Detailed syntax breakdown of Definition df-frec
StepHypRef Expression
1 cF . . 3  class  F
2 cI . . 3  class  I
31, 2cfrec 6327 . 2  class frec ( F ,  I )
4 vg . . . . 5  setvar  g
5 cvv 2709 . . . . 5  class  _V
64cv 1331 . . . . . . . . . . 11  class  g
76cdm 4579 . . . . . . . . . 10  class  dom  g
8 vm . . . . . . . . . . . 12  setvar  m
98cv 1331 . . . . . . . . . . 11  class  m
109csuc 4320 . . . . . . . . . 10  class  suc  m
117, 10wceq 1332 . . . . . . . . 9  wff  dom  g  =  suc  m
12 vx . . . . . . . . . . 11  setvar  x
1312cv 1331 . . . . . . . . . 10  class  x
149, 6cfv 5163 . . . . . . . . . . 11  class  ( g `
 m )
1514, 1cfv 5163 . . . . . . . . . 10  class  ( F `
 ( g `  m ) )
1613, 15wcel 2125 . . . . . . . . 9  wff  x  e.  ( F `  (
g `  m )
)
1711, 16wa 103 . . . . . . . 8  wff  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m ) ) )
18 com 4543 . . . . . . . 8  class  om
1917, 8, 18wrex 2433 . . . . . . 7  wff  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )
20 c0 3390 . . . . . . . . 9  class  (/)
217, 20wceq 1332 . . . . . . . 8  wff  dom  g  =  (/)
2213, 2wcel 2125 . . . . . . . 8  wff  x  e.  I
2321, 22wa 103 . . . . . . 7  wff  ( dom  g  =  (/)  /\  x  e.  I )
2419, 23wo 698 . . . . . 6  wff  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) )
2524, 12cab 2140 . . . . 5  class  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) }
264, 5, 25cmpt 4021 . . . 4  class  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } )
2726crecs 6241 . . 3  class recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )
2827, 18cres 4581 . 2  class  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
293, 28wceq 1332 1  wff frec ( F ,  I )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  I ) ) } ) )  |`  om )
Colors of variables: wff set class
This definition is referenced by:  freceq1  6329  freceq2  6330  frecex  6331  frecfun  6332  nffrec  6333  frec0g  6334  frecfnom  6338  freccllem  6339  frecfcllem  6341  frecsuclem  6343
  Copyright terms: Public domain W3C validator