| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffrec | GIF version | ||
| Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
| Ref | Expression |
|---|---|
| nffrec.1 | ⊢ Ⅎ𝑥𝐹 |
| nffrec.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffrec | ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frec 6500 | . 2 ⊢ frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) | |
| 2 | nfcv 2350 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2350 | . . . . . . . 8 ⊢ Ⅎ𝑥ω | |
| 4 | nfv 1552 | . . . . . . . . 9 ⊢ Ⅎ𝑥dom 𝑔 = suc 𝑚 | |
| 5 | nffrec.1 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
| 6 | nfcv 2350 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝑔‘𝑚) | |
| 7 | 5, 6 | nffv 5609 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘𝑚)) |
| 8 | 7 | nfcri 2344 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹‘(𝑔‘𝑚)) |
| 9 | 4, 8 | nfan 1589 | . . . . . . . 8 ⊢ Ⅎ𝑥(dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
| 10 | 3, 9 | nfrexya 2549 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
| 11 | nfv 1552 | . . . . . . . 8 ⊢ Ⅎ𝑥dom 𝑔 = ∅ | |
| 12 | nffrec.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐴 | |
| 13 | 12 | nfcri 2344 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 14 | 11, 13 | nfan 1589 | . . . . . . 7 ⊢ Ⅎ𝑥(dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴) |
| 15 | 10, 14 | nfor 1598 | . . . . . 6 ⊢ Ⅎ𝑥(∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴)) |
| 16 | 15 | nfab 2355 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))} |
| 17 | 2, 16 | nfmpt 4152 | . . . 4 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))}) |
| 18 | 17 | nfrecs 6416 | . . 3 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) |
| 19 | 18, 3 | nfres 4980 | . 2 ⊢ Ⅎ𝑥(recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) |
| 20 | 1, 19 | nfcxfr 2347 | 1 ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2178 {cab 2193 Ⅎwnfc 2337 ∃wrex 2487 Vcvv 2776 ∅c0 3468 ↦ cmpt 4121 suc csuc 4430 ωcom 4656 dom cdm 4693 ↾ cres 4695 ‘cfv 5290 recscrecs 6413 freccfrec 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-xp 4699 df-res 4705 df-iota 5251 df-fv 5298 df-recs 6414 df-frec 6500 |
| This theorem is referenced by: nfseq 10639 |
| Copyright terms: Public domain | W3C validator |