![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffrec | GIF version |
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
Ref | Expression |
---|---|
nffrec.1 | ⊢ Ⅎ𝑥𝐹 |
nffrec.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffrec | ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frec 6444 | . 2 ⊢ frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) | |
2 | nfcv 2336 | . . . . 5 ⊢ Ⅎ𝑥V | |
3 | nfcv 2336 | . . . . . . . 8 ⊢ Ⅎ𝑥ω | |
4 | nfv 1539 | . . . . . . . . 9 ⊢ Ⅎ𝑥dom 𝑔 = suc 𝑚 | |
5 | nffrec.1 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
6 | nfcv 2336 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝑔‘𝑚) | |
7 | 5, 6 | nffv 5564 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘𝑚)) |
8 | 7 | nfcri 2330 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹‘(𝑔‘𝑚)) |
9 | 4, 8 | nfan 1576 | . . . . . . . 8 ⊢ Ⅎ𝑥(dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
10 | 3, 9 | nfrexya 2535 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
11 | nfv 1539 | . . . . . . . 8 ⊢ Ⅎ𝑥dom 𝑔 = ∅ | |
12 | nffrec.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐴 | |
13 | 12 | nfcri 2330 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
14 | 11, 13 | nfan 1576 | . . . . . . 7 ⊢ Ⅎ𝑥(dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴) |
15 | 10, 14 | nfor 1585 | . . . . . 6 ⊢ Ⅎ𝑥(∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴)) |
16 | 15 | nfab 2341 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))} |
17 | 2, 16 | nfmpt 4121 | . . . 4 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))}) |
18 | 17 | nfrecs 6360 | . . 3 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) |
19 | 18, 3 | nfres 4944 | . 2 ⊢ Ⅎ𝑥(recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) |
20 | 1, 19 | nfcxfr 2333 | 1 ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 {cab 2179 Ⅎwnfc 2323 ∃wrex 2473 Vcvv 2760 ∅c0 3446 ↦ cmpt 4090 suc csuc 4396 ωcom 4622 dom cdm 4659 ↾ cres 4661 ‘cfv 5254 recscrecs 6357 freccfrec 6443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-xp 4665 df-res 4671 df-iota 5215 df-fv 5262 df-recs 6358 df-frec 6444 |
This theorem is referenced by: nfseq 10528 |
Copyright terms: Public domain | W3C validator |