| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nffrec | GIF version | ||
| Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
| Ref | Expression |
|---|---|
| nffrec.1 | ⊢ Ⅎ𝑥𝐹 |
| nffrec.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nffrec | ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frec 6476 | . 2 ⊢ frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) | |
| 2 | nfcv 2347 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2347 | . . . . . . . 8 ⊢ Ⅎ𝑥ω | |
| 4 | nfv 1550 | . . . . . . . . 9 ⊢ Ⅎ𝑥dom 𝑔 = suc 𝑚 | |
| 5 | nffrec.1 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
| 6 | nfcv 2347 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝑔‘𝑚) | |
| 7 | 5, 6 | nffv 5585 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘𝑚)) |
| 8 | 7 | nfcri 2341 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹‘(𝑔‘𝑚)) |
| 9 | 4, 8 | nfan 1587 | . . . . . . . 8 ⊢ Ⅎ𝑥(dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
| 10 | 3, 9 | nfrexya 2546 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
| 11 | nfv 1550 | . . . . . . . 8 ⊢ Ⅎ𝑥dom 𝑔 = ∅ | |
| 12 | nffrec.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐴 | |
| 13 | 12 | nfcri 2341 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 14 | 11, 13 | nfan 1587 | . . . . . . 7 ⊢ Ⅎ𝑥(dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴) |
| 15 | 10, 14 | nfor 1596 | . . . . . 6 ⊢ Ⅎ𝑥(∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴)) |
| 16 | 15 | nfab 2352 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))} |
| 17 | 2, 16 | nfmpt 4135 | . . . 4 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))}) |
| 18 | 17 | nfrecs 6392 | . . 3 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) |
| 19 | 18, 3 | nfres 4960 | . 2 ⊢ Ⅎ𝑥(recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) |
| 20 | 1, 19 | nfcxfr 2344 | 1 ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∨ wo 709 = wceq 1372 ∈ wcel 2175 {cab 2190 Ⅎwnfc 2334 ∃wrex 2484 Vcvv 2771 ∅c0 3459 ↦ cmpt 4104 suc csuc 4411 ωcom 4637 dom cdm 4674 ↾ cres 4676 ‘cfv 5270 recscrecs 6389 freccfrec 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-xp 4680 df-res 4686 df-iota 5231 df-fv 5278 df-recs 6390 df-frec 6476 |
| This theorem is referenced by: nfseq 10600 |
| Copyright terms: Public domain | W3C validator |