ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec GIF version

Theorem nffrec 6449
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1 𝑥𝐹
nffrec.2 𝑥𝐴
Assertion
Ref Expression
nffrec 𝑥frec(𝐹, 𝐴)

Proof of Theorem nffrec
Dummy variables 𝑔 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6444 . 2 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})) ↾ ω)
2 nfcv 2336 . . . . 5 𝑥V
3 nfcv 2336 . . . . . . . 8 𝑥ω
4 nfv 1539 . . . . . . . . 9 𝑥dom 𝑔 = suc 𝑚
5 nffrec.1 . . . . . . . . . . 11 𝑥𝐹
6 nfcv 2336 . . . . . . . . . . 11 𝑥(𝑔𝑚)
75, 6nffv 5564 . . . . . . . . . 10 𝑥(𝐹‘(𝑔𝑚))
87nfcri 2330 . . . . . . . . 9 𝑥 𝑦 ∈ (𝐹‘(𝑔𝑚))
94, 8nfan 1576 . . . . . . . 8 𝑥(dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))
103, 9nfrexya 2535 . . . . . . 7 𝑥𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))
11 nfv 1539 . . . . . . . 8 𝑥dom 𝑔 = ∅
12 nffrec.2 . . . . . . . . 9 𝑥𝐴
1312nfcri 2330 . . . . . . . 8 𝑥 𝑦𝐴
1411, 13nfan 1576 . . . . . . 7 𝑥(dom 𝑔 = ∅ ∧ 𝑦𝐴)
1510, 14nfor 1585 . . . . . 6 𝑥(∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))
1615nfab 2341 . . . . 5 𝑥{𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}
172, 16nfmpt 4121 . . . 4 𝑥(𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
1817nfrecs 6360 . . 3 𝑥recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}))
1918, 3nfres 4944 . 2 𝑥(recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})) ↾ ω)
201, 19nfcxfr 2333 1 𝑥frec(𝐹, 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709   = wceq 1364  wcel 2164  {cab 2179  wnfc 2323  wrex 2473  Vcvv 2760  c0 3446  cmpt 4090  suc csuc 4396  ωcom 4622  dom cdm 4659  cres 4661  cfv 5254  recscrecs 6357  freccfrec 6443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-xp 4665  df-res 4671  df-iota 5215  df-fv 5262  df-recs 6358  df-frec 6444
This theorem is referenced by:  nfseq  10528
  Copyright terms: Public domain W3C validator