ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec GIF version

Theorem nffrec 6481
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1 𝑥𝐹
nffrec.2 𝑥𝐴
Assertion
Ref Expression
nffrec 𝑥frec(𝐹, 𝐴)

Proof of Theorem nffrec
Dummy variables 𝑔 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6476 . 2 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})) ↾ ω)
2 nfcv 2347 . . . . 5 𝑥V
3 nfcv 2347 . . . . . . . 8 𝑥ω
4 nfv 1550 . . . . . . . . 9 𝑥dom 𝑔 = suc 𝑚
5 nffrec.1 . . . . . . . . . . 11 𝑥𝐹
6 nfcv 2347 . . . . . . . . . . 11 𝑥(𝑔𝑚)
75, 6nffv 5585 . . . . . . . . . 10 𝑥(𝐹‘(𝑔𝑚))
87nfcri 2341 . . . . . . . . 9 𝑥 𝑦 ∈ (𝐹‘(𝑔𝑚))
94, 8nfan 1587 . . . . . . . 8 𝑥(dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))
103, 9nfrexya 2546 . . . . . . 7 𝑥𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))
11 nfv 1550 . . . . . . . 8 𝑥dom 𝑔 = ∅
12 nffrec.2 . . . . . . . . 9 𝑥𝐴
1312nfcri 2341 . . . . . . . 8 𝑥 𝑦𝐴
1411, 13nfan 1587 . . . . . . 7 𝑥(dom 𝑔 = ∅ ∧ 𝑦𝐴)
1510, 14nfor 1596 . . . . . 6 𝑥(∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))
1615nfab 2352 . . . . 5 𝑥{𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}
172, 16nfmpt 4135 . . . 4 𝑥(𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
1817nfrecs 6392 . . 3 𝑥recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}))
1918, 3nfres 4960 . 2 𝑥(recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})) ↾ ω)
201, 19nfcxfr 2344 1 𝑥frec(𝐹, 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709   = wceq 1372  wcel 2175  {cab 2190  wnfc 2334  wrex 2484  Vcvv 2771  c0 3459  cmpt 4104  suc csuc 4411  ωcom 4637  dom cdm 4674  cres 4676  cfv 5270  recscrecs 6389  freccfrec 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-xp 4680  df-res 4686  df-iota 5231  df-fv 5278  df-recs 6390  df-frec 6476
This theorem is referenced by:  nfseq  10600
  Copyright terms: Public domain W3C validator