ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec GIF version

Theorem nffrec 6375
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1 𝑥𝐹
nffrec.2 𝑥𝐴
Assertion
Ref Expression
nffrec 𝑥frec(𝐹, 𝐴)

Proof of Theorem nffrec
Dummy variables 𝑔 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6370 . 2 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})) ↾ ω)
2 nfcv 2312 . . . . 5 𝑥V
3 nfcv 2312 . . . . . . . 8 𝑥ω
4 nfv 1521 . . . . . . . . 9 𝑥dom 𝑔 = suc 𝑚
5 nffrec.1 . . . . . . . . . . 11 𝑥𝐹
6 nfcv 2312 . . . . . . . . . . 11 𝑥(𝑔𝑚)
75, 6nffv 5506 . . . . . . . . . 10 𝑥(𝐹‘(𝑔𝑚))
87nfcri 2306 . . . . . . . . 9 𝑥 𝑦 ∈ (𝐹‘(𝑔𝑚))
94, 8nfan 1558 . . . . . . . 8 𝑥(dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))
103, 9nfrexya 2511 . . . . . . 7 𝑥𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))
11 nfv 1521 . . . . . . . 8 𝑥dom 𝑔 = ∅
12 nffrec.2 . . . . . . . . 9 𝑥𝐴
1312nfcri 2306 . . . . . . . 8 𝑥 𝑦𝐴
1411, 13nfan 1558 . . . . . . 7 𝑥(dom 𝑔 = ∅ ∧ 𝑦𝐴)
1510, 14nfor 1567 . . . . . 6 𝑥(∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))
1615nfab 2317 . . . . 5 𝑥{𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}
172, 16nfmpt 4081 . . . 4 𝑥(𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
1817nfrecs 6286 . . 3 𝑥recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}))
1918, 3nfres 4893 . 2 𝑥(recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})) ↾ ω)
201, 19nfcxfr 2309 1 𝑥frec(𝐹, 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 103  wo 703   = wceq 1348  wcel 2141  {cab 2156  wnfc 2299  wrex 2449  Vcvv 2730  c0 3414  cmpt 4050  suc csuc 4350  ωcom 4574  dom cdm 4611  cres 4613  cfv 5198  recscrecs 6283  freccfrec 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-xp 4617  df-res 4623  df-iota 5160  df-fv 5206  df-recs 6284  df-frec 6370
This theorem is referenced by:  nfseq  10411
  Copyright terms: Public domain W3C validator