![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nffrec | GIF version |
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.) |
Ref | Expression |
---|---|
nffrec.1 | ⊢ Ⅎ𝑥𝐹 |
nffrec.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nffrec | ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frec 6240 | . 2 ⊢ frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) | |
2 | nfcv 2253 | . . . . 5 ⊢ Ⅎ𝑥V | |
3 | nfcv 2253 | . . . . . . . 8 ⊢ Ⅎ𝑥ω | |
4 | nfv 1489 | . . . . . . . . 9 ⊢ Ⅎ𝑥dom 𝑔 = suc 𝑚 | |
5 | nffrec.1 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
6 | nfcv 2253 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥(𝑔‘𝑚) | |
7 | 5, 6 | nffv 5383 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝐹‘(𝑔‘𝑚)) |
8 | 7 | nfcri 2247 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹‘(𝑔‘𝑚)) |
9 | 4, 8 | nfan 1525 | . . . . . . . 8 ⊢ Ⅎ𝑥(dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
10 | 3, 9 | nfrexya 2446 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) |
11 | nfv 1489 | . . . . . . . 8 ⊢ Ⅎ𝑥dom 𝑔 = ∅ | |
12 | nffrec.2 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐴 | |
13 | 12 | nfcri 2247 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
14 | 11, 13 | nfan 1525 | . . . . . . 7 ⊢ Ⅎ𝑥(dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴) |
15 | 10, 14 | nfor 1534 | . . . . . 6 ⊢ Ⅎ𝑥(∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴)) |
16 | 15 | nfab 2258 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))} |
17 | 2, 16 | nfmpt 3978 | . . . 4 ⊢ Ⅎ𝑥(𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))}) |
18 | 17 | nfrecs 6156 | . . 3 ⊢ Ⅎ𝑥recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) |
19 | 18, 3 | nfres 4777 | . 2 ⊢ Ⅎ𝑥(recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))})) ↾ ω) |
20 | 1, 19 | nfcxfr 2250 | 1 ⊢ Ⅎ𝑥frec(𝐹, 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ∨ wo 680 = wceq 1312 ∈ wcel 1461 {cab 2099 Ⅎwnfc 2240 ∃wrex 2389 Vcvv 2655 ∅c0 3327 ↦ cmpt 3947 suc csuc 4245 ωcom 4462 dom cdm 4497 ↾ cres 4499 ‘cfv 5079 recscrecs 6153 freccfrec 6239 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-un 3039 df-in 3041 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-mpt 3949 df-xp 4503 df-res 4509 df-iota 5044 df-fv 5087 df-recs 6154 df-frec 6240 |
This theorem is referenced by: nfseq 10115 |
Copyright terms: Public domain | W3C validator |