ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nffrec GIF version

Theorem nffrec 6505
Description: Bound-variable hypothesis builder for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Hypotheses
Ref Expression
nffrec.1 𝑥𝐹
nffrec.2 𝑥𝐴
Assertion
Ref Expression
nffrec 𝑥frec(𝐹, 𝐴)

Proof of Theorem nffrec
Dummy variables 𝑔 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6500 . 2 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})) ↾ ω)
2 nfcv 2350 . . . . 5 𝑥V
3 nfcv 2350 . . . . . . . 8 𝑥ω
4 nfv 1552 . . . . . . . . 9 𝑥dom 𝑔 = suc 𝑚
5 nffrec.1 . . . . . . . . . . 11 𝑥𝐹
6 nfcv 2350 . . . . . . . . . . 11 𝑥(𝑔𝑚)
75, 6nffv 5609 . . . . . . . . . 10 𝑥(𝐹‘(𝑔𝑚))
87nfcri 2344 . . . . . . . . 9 𝑥 𝑦 ∈ (𝐹‘(𝑔𝑚))
94, 8nfan 1589 . . . . . . . 8 𝑥(dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))
103, 9nfrexya 2549 . . . . . . 7 𝑥𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚)))
11 nfv 1552 . . . . . . . 8 𝑥dom 𝑔 = ∅
12 nffrec.2 . . . . . . . . 9 𝑥𝐴
1312nfcri 2344 . . . . . . . 8 𝑥 𝑦𝐴
1411, 13nfan 1589 . . . . . . 7 𝑥(dom 𝑔 = ∅ ∧ 𝑦𝐴)
1510, 14nfor 1598 . . . . . 6 𝑥(∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))
1615nfab 2355 . . . . 5 𝑥{𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}
172, 16nfmpt 4152 . . . 4 𝑥(𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
1817nfrecs 6416 . . 3 𝑥recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}))
1918, 3nfres 4980 . 2 𝑥(recs((𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑦 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})) ↾ ω)
201, 19nfcxfr 2347 1 𝑥frec(𝐹, 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104  wo 710   = wceq 1373  wcel 2178  {cab 2193  wnfc 2337  wrex 2487  Vcvv 2776  c0 3468  cmpt 4121  suc csuc 4430  ωcom 4656  dom cdm 4693  cres 4695  cfv 5290  recscrecs 6413  freccfrec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-xp 4699  df-res 4705  df-iota 5251  df-fv 5298  df-recs 6414  df-frec 6500
This theorem is referenced by:  nfseq  10639
  Copyright terms: Public domain W3C validator