| Step | Hyp | Ref
 | Expression | 
| 1 |   | frecrdg.1 | 
. . . 4
⊢ (𝜑 → 𝐹 Fn V) | 
| 2 |   | vex 2766 | 
. . . . . 6
⊢ 𝑧 ∈ V | 
| 3 |   | funfvex 5575 | 
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ V) | 
| 4 | 3 | funfni 5358 | 
. . . . . 6
⊢ ((𝐹 Fn V ∧ 𝑧 ∈ V) → (𝐹‘𝑧) ∈ V) | 
| 5 | 2, 4 | mpan2 425 | 
. . . . 5
⊢ (𝐹 Fn V → (𝐹‘𝑧) ∈ V) | 
| 6 | 5 | alrimiv 1888 | 
. . . 4
⊢ (𝐹 Fn V → ∀𝑧(𝐹‘𝑧) ∈ V) | 
| 7 | 1, 6 | syl 14 | 
. . 3
⊢ (𝜑 → ∀𝑧(𝐹‘𝑧) ∈ V) | 
| 8 |   | frecrdg.2 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 9 |   | frecfnom 6459 | 
. . 3
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → frec(𝐹, 𝐴) Fn ω) | 
| 10 | 7, 8, 9 | syl2anc 411 | 
. 2
⊢ (𝜑 → frec(𝐹, 𝐴) Fn ω) | 
| 11 |   | rdgifnon2 6438 | 
. . . 4
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → rec(𝐹, 𝐴) Fn On) | 
| 12 | 7, 8, 11 | syl2anc 411 | 
. . 3
⊢ (𝜑 → rec(𝐹, 𝐴) Fn On) | 
| 13 |   | omsson 4649 | 
. . 3
⊢ ω
⊆ On | 
| 14 |   | fnssres 5371 | 
. . 3
⊢
((rec(𝐹, 𝐴) Fn On ∧ ω ⊆
On) → (rec(𝐹, 𝐴) ↾ ω) Fn
ω) | 
| 15 | 12, 13, 14 | sylancl 413 | 
. 2
⊢ (𝜑 → (rec(𝐹, 𝐴) ↾ ω) Fn
ω) | 
| 16 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑥 = ∅ → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘∅)) | 
| 17 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑥 = ∅ → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾
ω)‘∅)) | 
| 18 | 16, 17 | eqeq12d 2211 | 
. . . 4
⊢ (𝑥 = ∅ → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘∅) = ((rec(𝐹, 𝐴) ↾
ω)‘∅))) | 
| 19 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘𝑦)) | 
| 20 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑥 = 𝑦 → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) | 
| 21 | 19, 20 | eqeq12d 2211 | 
. . . 4
⊢ (𝑥 = 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦))) | 
| 22 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑥 = suc 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘suc 𝑦)) | 
| 23 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑥 = suc 𝑦 → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦)) | 
| 24 | 22, 23 | eqeq12d 2211 | 
. . . 4
⊢ (𝑥 = suc 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))) | 
| 25 |   | frec0g 6455 | 
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴) | 
| 26 | 8, 25 | syl 14 | 
. . . . 5
⊢ (𝜑 → (frec(𝐹, 𝐴)‘∅) = 𝐴) | 
| 27 |   | peano1 4630 | 
. . . . . . 7
⊢ ∅
∈ ω | 
| 28 |   | fvres 5582 | 
. . . . . . 7
⊢ (∅
∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘∅) =
(rec(𝐹, 𝐴)‘∅)) | 
| 29 | 27, 28 | ax-mp 5 | 
. . . . . 6
⊢
((rec(𝐹, 𝐴) ↾
ω)‘∅) = (rec(𝐹, 𝐴)‘∅) | 
| 30 |   | rdg0g 6446 | 
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴) | 
| 31 | 8, 30 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (rec(𝐹, 𝐴)‘∅) = 𝐴) | 
| 32 | 29, 31 | eqtrid 2241 | 
. . . . 5
⊢ (𝜑 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴) | 
| 33 | 26, 32 | eqtr4d 2232 | 
. . . 4
⊢ (𝜑 → (frec(𝐹, 𝐴)‘∅) = ((rec(𝐹, 𝐴) ↾
ω)‘∅)) | 
| 34 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) | 
| 35 |   | fvres 5582 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω →
((rec(𝐹, 𝐴) ↾ ω)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦)) | 
| 36 | 35 | ad2antlr 489 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦)) | 
| 37 | 34, 36 | eqtrd 2229 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦)) | 
| 38 | 37 | fveq2d 5562 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦))) | 
| 39 | 7, 8 | jca 306 | 
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉)) | 
| 40 |   | simp1 999 | 
. . . . . . . . . . . . 13
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ω) → ∀𝑧(𝐹‘𝑧) ∈ V) | 
| 41 |   | ralv 2780 | 
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈ V
(𝐹‘𝑧) ∈ V ↔ ∀𝑧(𝐹‘𝑧) ∈ V) | 
| 42 | 40, 41 | sylibr 134 | 
. . . . . . . . . . . 12
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ω) → ∀𝑧 ∈ V (𝐹‘𝑧) ∈ V) | 
| 43 |   | simp2 1000 | 
. . . . . . . . . . . . 13
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ω) → 𝐴 ∈ 𝑉) | 
| 44 | 43 | elexd 2776 | 
. . . . . . . . . . . 12
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ω) → 𝐴 ∈ V) | 
| 45 |   | simp3 1001 | 
. . . . . . . . . . . 12
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω) | 
| 46 |   | frecsuc 6465 | 
. . . . . . . . . . . 12
⊢
((∀𝑧 ∈ V
(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ V ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦))) | 
| 47 | 42, 44, 45, 46 | syl3anc 1249 | 
. . . . . . . . . . 11
⊢
((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦))) | 
| 48 | 47 | 3expa 1205 | 
. . . . . . . . . 10
⊢
(((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦))) | 
| 49 | 39, 48 | sylan 283 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦))) | 
| 50 | 49 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦))) | 
| 51 | 1 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝐹 Fn V) | 
| 52 | 8 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝐴 ∈ 𝑉) | 
| 53 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω) | 
| 54 |   | nnon 4646 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | 
| 55 | 53, 54 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝑦 ∈ On) | 
| 56 |   | frecrdg.inc | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) | 
| 57 | 56 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ∀𝑥 𝑥 ⊆ (𝐹‘𝑥)) | 
| 58 | 51, 52, 55, 57 | rdgisucinc 6443 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (rec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦))) | 
| 59 | 58 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (rec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦))) | 
| 60 | 38, 50, 59 | 3eqtr4d 2239 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦)) | 
| 61 |   | peano2 4631 | 
. . . . . . . . 9
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) | 
| 62 |   | fvres 5582 | 
. . . . . . . . 9
⊢ (suc
𝑦 ∈ ω →
((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦)) | 
| 63 | 61, 62 | syl 14 | 
. . . . . . . 8
⊢ (𝑦 ∈ ω →
((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦)) | 
| 64 | 63 | ad2antlr 489 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦)) | 
| 65 | 60, 64 | eqtr4d 2232 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦)) | 
| 66 | 65 | ex 115 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))) | 
| 67 | 66 | expcom 116 | 
. . . 4
⊢ (𝑦 ∈ ω → (𝜑 → ((frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦)))) | 
| 68 | 18, 21, 24, 33, 67 | finds2 4637 | 
. . 3
⊢ (𝑥 ∈ ω → (𝜑 → (frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥))) | 
| 69 | 68 | impcom 125 | 
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ω) → (frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) | 
| 70 | 10, 15, 69 | eqfnfvd 5662 | 
1
⊢ (𝜑 → frec(𝐹, 𝐴) = (rec(𝐹, 𝐴) ↾ ω)) |