ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecrdg GIF version

Theorem frecrdg 6403
Description: Transfinite recursion restricted to omega.

Given a suitable characteristic function, df-frec 6386 produces the same results as df-irdg 6365 restricted to ω.

Presumably the theorem would also hold if 𝐹 Fn V were changed to 𝑧(𝐹𝑧) ∈ V. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
frecrdg.1 (𝜑𝐹 Fn V)
frecrdg.2 (𝜑𝐴𝑉)
frecrdg.inc (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
Assertion
Ref Expression
frecrdg (𝜑 → frec(𝐹, 𝐴) = (rec(𝐹, 𝐴) ↾ ω))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑉   𝜑,𝑥

Proof of Theorem frecrdg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecrdg.1 . . . 4 (𝜑𝐹 Fn V)
2 vex 2740 . . . . . 6 𝑧 ∈ V
3 funfvex 5528 . . . . . . 7 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ V)
43funfni 5312 . . . . . 6 ((𝐹 Fn V ∧ 𝑧 ∈ V) → (𝐹𝑧) ∈ V)
52, 4mpan2 425 . . . . 5 (𝐹 Fn V → (𝐹𝑧) ∈ V)
65alrimiv 1874 . . . 4 (𝐹 Fn V → ∀𝑧(𝐹𝑧) ∈ V)
71, 6syl 14 . . 3 (𝜑 → ∀𝑧(𝐹𝑧) ∈ V)
8 frecrdg.2 . . 3 (𝜑𝐴𝑉)
9 frecfnom 6396 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → frec(𝐹, 𝐴) Fn ω)
107, 8, 9syl2anc 411 . 2 (𝜑 → frec(𝐹, 𝐴) Fn ω)
11 rdgifnon2 6375 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → rec(𝐹, 𝐴) Fn On)
127, 8, 11syl2anc 411 . . 3 (𝜑 → rec(𝐹, 𝐴) Fn On)
13 omsson 4609 . . 3 ω ⊆ On
14 fnssres 5325 . . 3 ((rec(𝐹, 𝐴) Fn On ∧ ω ⊆ On) → (rec(𝐹, 𝐴) ↾ ω) Fn ω)
1512, 13, 14sylancl 413 . 2 (𝜑 → (rec(𝐹, 𝐴) ↾ ω) Fn ω)
16 fveq2 5511 . . . . 5 (𝑥 = ∅ → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘∅))
17 fveq2 5511 . . . . 5 (𝑥 = ∅ → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘∅))
1816, 17eqeq12d 2192 . . . 4 (𝑥 = ∅ → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘∅) = ((rec(𝐹, 𝐴) ↾ ω)‘∅)))
19 fveq2 5511 . . . . 5 (𝑥 = 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘𝑦))
20 fveq2 5511 . . . . 5 (𝑥 = 𝑦 → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦))
2119, 20eqeq12d 2192 . . . 4 (𝑥 = 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)))
22 fveq2 5511 . . . . 5 (𝑥 = suc 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘suc 𝑦))
23 fveq2 5511 . . . . 5 (𝑥 = suc 𝑦 → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))
2422, 23eqeq12d 2192 . . . 4 (𝑥 = suc 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦)))
25 frec0g 6392 . . . . . 6 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
268, 25syl 14 . . . . 5 (𝜑 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
27 peano1 4590 . . . . . . 7 ∅ ∈ ω
28 fvres 5535 . . . . . . 7 (∅ ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅))
2927, 28ax-mp 5 . . . . . 6 ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅)
30 rdg0g 6383 . . . . . . 7 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
318, 30syl 14 . . . . . 6 (𝜑 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
3229, 31eqtrid 2222 . . . . 5 (𝜑 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴)
3326, 32eqtr4d 2213 . . . 4 (𝜑 → (frec(𝐹, 𝐴)‘∅) = ((rec(𝐹, 𝐴) ↾ ω)‘∅))
34 simpr 110 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦))
35 fvres 5535 . . . . . . . . . . 11 (𝑦 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦))
3635ad2antlr 489 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦))
3734, 36eqtrd 2210 . . . . . . . . 9 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦))
3837fveq2d 5515 . . . . . . . 8 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦)))
397, 8jca 306 . . . . . . . . . 10 (𝜑 → (∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉))
40 simp1 997 . . . . . . . . . . . . 13 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → ∀𝑧(𝐹𝑧) ∈ V)
41 ralv 2754 . . . . . . . . . . . . 13 (∀𝑧 ∈ V (𝐹𝑧) ∈ V ↔ ∀𝑧(𝐹𝑧) ∈ V)
4240, 41sylibr 134 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → ∀𝑧 ∈ V (𝐹𝑧) ∈ V)
43 simp2 998 . . . . . . . . . . . . 13 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → 𝐴𝑉)
4443elexd 2750 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → 𝐴 ∈ V)
45 simp3 999 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → 𝑦 ∈ ω)
46 frecsuc 6402 . . . . . . . . . . . 12 ((∀𝑧 ∈ V (𝐹𝑧) ∈ V ∧ 𝐴 ∈ V ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
4742, 44, 45, 46syl3anc 1238 . . . . . . . . . . 11 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
48473expa 1203 . . . . . . . . . 10 (((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
4939, 48sylan 283 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
5049adantr 276 . . . . . . . 8 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
511adantr 276 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → 𝐹 Fn V)
528adantr 276 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → 𝐴𝑉)
53 simpr 110 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ ω)
54 nnon 4606 . . . . . . . . . . 11 (𝑦 ∈ ω → 𝑦 ∈ On)
5553, 54syl 14 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ On)
56 frecrdg.inc . . . . . . . . . . 11 (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
5756adantr 276 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
5851, 52, 55, 57rdgisucinc 6380 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → (rec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦)))
5958adantr 276 . . . . . . . 8 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (rec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦)))
6038, 50, 593eqtr4d 2220 . . . . . . 7 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
61 peano2 4591 . . . . . . . . 9 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
62 fvres 5535 . . . . . . . . 9 (suc 𝑦 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
6361, 62syl 14 . . . . . . . 8 (𝑦 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
6463ad2antlr 489 . . . . . . 7 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
6560, 64eqtr4d 2213 . . . . . 6 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))
6665ex 115 . . . . 5 ((𝜑𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦)))
6766expcom 116 . . . 4 (𝑦 ∈ ω → (𝜑 → ((frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))))
6818, 21, 24, 33, 67finds2 4597 . . 3 (𝑥 ∈ ω → (𝜑 → (frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥)))
6968impcom 125 . 2 ((𝜑𝑥 ∈ ω) → (frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥))
7010, 15, 69eqfnfvd 5612 1 (𝜑 → frec(𝐹, 𝐴) = (rec(𝐹, 𝐴) ↾ ω))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wal 1351   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  wss 3129  c0 3422  Oncon0 4360  suc csuc 4362  ωcom 4586  cres 4625   Fn wfn 5207  cfv 5212  reccrdg 6364  freccfrec 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-recs 6300  df-irdg 6365  df-frec 6386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator