ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecrdg GIF version

Theorem frecrdg 6376
Description: Transfinite recursion restricted to omega.

Given a suitable characteristic function, df-frec 6359 produces the same results as df-irdg 6338 restricted to ω.

Presumably the theorem would also hold if 𝐹 Fn V were changed to 𝑧(𝐹𝑧) ∈ V. (Contributed by Jim Kingdon, 29-Aug-2019.)

Hypotheses
Ref Expression
frecrdg.1 (𝜑𝐹 Fn V)
frecrdg.2 (𝜑𝐴𝑉)
frecrdg.inc (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
Assertion
Ref Expression
frecrdg (𝜑 → frec(𝐹, 𝐴) = (rec(𝐹, 𝐴) ↾ ω))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑉   𝜑,𝑥

Proof of Theorem frecrdg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecrdg.1 . . . 4 (𝜑𝐹 Fn V)
2 vex 2729 . . . . . 6 𝑧 ∈ V
3 funfvex 5503 . . . . . . 7 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ V)
43funfni 5288 . . . . . 6 ((𝐹 Fn V ∧ 𝑧 ∈ V) → (𝐹𝑧) ∈ V)
52, 4mpan2 422 . . . . 5 (𝐹 Fn V → (𝐹𝑧) ∈ V)
65alrimiv 1862 . . . 4 (𝐹 Fn V → ∀𝑧(𝐹𝑧) ∈ V)
71, 6syl 14 . . 3 (𝜑 → ∀𝑧(𝐹𝑧) ∈ V)
8 frecrdg.2 . . 3 (𝜑𝐴𝑉)
9 frecfnom 6369 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → frec(𝐹, 𝐴) Fn ω)
107, 8, 9syl2anc 409 . 2 (𝜑 → frec(𝐹, 𝐴) Fn ω)
11 rdgifnon2 6348 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → rec(𝐹, 𝐴) Fn On)
127, 8, 11syl2anc 409 . . 3 (𝜑 → rec(𝐹, 𝐴) Fn On)
13 omsson 4590 . . 3 ω ⊆ On
14 fnssres 5301 . . 3 ((rec(𝐹, 𝐴) Fn On ∧ ω ⊆ On) → (rec(𝐹, 𝐴) ↾ ω) Fn ω)
1512, 13, 14sylancl 410 . 2 (𝜑 → (rec(𝐹, 𝐴) ↾ ω) Fn ω)
16 fveq2 5486 . . . . 5 (𝑥 = ∅ → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘∅))
17 fveq2 5486 . . . . 5 (𝑥 = ∅ → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘∅))
1816, 17eqeq12d 2180 . . . 4 (𝑥 = ∅ → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘∅) = ((rec(𝐹, 𝐴) ↾ ω)‘∅)))
19 fveq2 5486 . . . . 5 (𝑥 = 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘𝑦))
20 fveq2 5486 . . . . 5 (𝑥 = 𝑦 → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦))
2119, 20eqeq12d 2180 . . . 4 (𝑥 = 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)))
22 fveq2 5486 . . . . 5 (𝑥 = suc 𝑦 → (frec(𝐹, 𝐴)‘𝑥) = (frec(𝐹, 𝐴)‘suc 𝑦))
23 fveq2 5486 . . . . 5 (𝑥 = suc 𝑦 → ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))
2422, 23eqeq12d 2180 . . . 4 (𝑥 = suc 𝑦 → ((frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) ↔ (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦)))
25 frec0g 6365 . . . . . 6 (𝐴𝑉 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
268, 25syl 14 . . . . 5 (𝜑 → (frec(𝐹, 𝐴)‘∅) = 𝐴)
27 peano1 4571 . . . . . . 7 ∅ ∈ ω
28 fvres 5510 . . . . . . 7 (∅ ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅))
2927, 28ax-mp 5 . . . . . 6 ((rec(𝐹, 𝐴) ↾ ω)‘∅) = (rec(𝐹, 𝐴)‘∅)
30 rdg0g 6356 . . . . . . 7 (𝐴𝑉 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
318, 30syl 14 . . . . . 6 (𝜑 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
3229, 31syl5eq 2211 . . . . 5 (𝜑 → ((rec(𝐹, 𝐴) ↾ ω)‘∅) = 𝐴)
3326, 32eqtr4d 2201 . . . 4 (𝜑 → (frec(𝐹, 𝐴)‘∅) = ((rec(𝐹, 𝐴) ↾ ω)‘∅))
34 simpr 109 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦))
35 fvres 5510 . . . . . . . . . . 11 (𝑦 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦))
3635ad2antlr 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦))
3734, 36eqtrd 2198 . . . . . . . . 9 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝑦))
3837fveq2d 5490 . . . . . . . 8 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (𝐹‘(frec(𝐹, 𝐴)‘𝑦)) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦)))
397, 8jca 304 . . . . . . . . . 10 (𝜑 → (∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉))
40 simp1 987 . . . . . . . . . . . . 13 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → ∀𝑧(𝐹𝑧) ∈ V)
41 ralv 2743 . . . . . . . . . . . . 13 (∀𝑧 ∈ V (𝐹𝑧) ∈ V ↔ ∀𝑧(𝐹𝑧) ∈ V)
4240, 41sylibr 133 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → ∀𝑧 ∈ V (𝐹𝑧) ∈ V)
43 simp2 988 . . . . . . . . . . . . 13 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → 𝐴𝑉)
4443elexd 2739 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → 𝐴 ∈ V)
45 simp3 989 . . . . . . . . . . . 12 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → 𝑦 ∈ ω)
46 frecsuc 6375 . . . . . . . . . . . 12 ((∀𝑧 ∈ V (𝐹𝑧) ∈ V ∧ 𝐴 ∈ V ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
4742, 44, 45, 46syl3anc 1228 . . . . . . . . . . 11 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
48473expa 1193 . . . . . . . . . 10 (((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) ∧ 𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
4939, 48sylan 281 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
5049adantr 274 . . . . . . . 8 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(frec(𝐹, 𝐴)‘𝑦)))
511adantr 274 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → 𝐹 Fn V)
528adantr 274 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → 𝐴𝑉)
53 simpr 109 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ ω)
54 nnon 4587 . . . . . . . . . . 11 (𝑦 ∈ ω → 𝑦 ∈ On)
5553, 54syl 14 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ On)
56 frecrdg.inc . . . . . . . . . . 11 (𝜑 → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
5756adantr 274 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω) → ∀𝑥 𝑥 ⊆ (𝐹𝑥))
5851, 52, 55, 57rdgisucinc 6353 . . . . . . . . 9 ((𝜑𝑦 ∈ ω) → (rec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦)))
5958adantr 274 . . . . . . . 8 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (rec(𝐹, 𝐴)‘suc 𝑦) = (𝐹‘(rec(𝐹, 𝐴)‘𝑦)))
6038, 50, 593eqtr4d 2208 . . . . . . 7 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
61 peano2 4572 . . . . . . . . 9 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
62 fvres 5510 . . . . . . . . 9 (suc 𝑦 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
6361, 62syl 14 . . . . . . . 8 (𝑦 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
6463ad2antlr 481 . . . . . . 7 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦) = (rec(𝐹, 𝐴)‘suc 𝑦))
6560, 64eqtr4d 2201 . . . . . 6 (((𝜑𝑦 ∈ ω) ∧ (frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦)) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))
6665ex 114 . . . . 5 ((𝜑𝑦 ∈ ω) → ((frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦)))
6766expcom 115 . . . 4 (𝑦 ∈ ω → (𝜑 → ((frec(𝐹, 𝐴)‘𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑦) → (frec(𝐹, 𝐴)‘suc 𝑦) = ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑦))))
6818, 21, 24, 33, 67finds2 4578 . . 3 (𝑥 ∈ ω → (𝜑 → (frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥)))
6968impcom 124 . 2 ((𝜑𝑥 ∈ ω) → (frec(𝐹, 𝐴)‘𝑥) = ((rec(𝐹, 𝐴) ↾ ω)‘𝑥))
7010, 15, 69eqfnfvd 5586 1 (𝜑 → frec(𝐹, 𝐴) = (rec(𝐹, 𝐴) ↾ ω))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wal 1341   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  wss 3116  c0 3409  Oncon0 4341  suc csuc 4343  ωcom 4567  cres 4606   Fn wfn 5183  cfv 5188  reccrdg 6337  freccfrec 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273  df-irdg 6338  df-frec 6359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator