ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freceq1 GIF version

Theorem freceq1 6371
Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
freceq1 (𝐹 = 𝐺 → frec(𝐹, 𝐴) = frec(𝐺, 𝐴))

Proof of Theorem freceq1
Dummy variables 𝑥 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . . . . . 11 ((𝐹 = 𝐺𝑔 ∈ V) → 𝐹 = 𝐺)
21fveq1d 5498 . . . . . . . . . 10 ((𝐹 = 𝐺𝑔 ∈ V) → (𝐹‘(𝑔𝑚)) = (𝐺‘(𝑔𝑚)))
32eleq2d 2240 . . . . . . . . 9 ((𝐹 = 𝐺𝑔 ∈ V) → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐺‘(𝑔𝑚))))
43anbi2d 461 . . . . . . . 8 ((𝐹 = 𝐺𝑔 ∈ V) → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚)))))
54rexbidv 2471 . . . . . . 7 ((𝐹 = 𝐺𝑔 ∈ V) → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚)))))
65orbi1d 786 . . . . . 6 ((𝐹 = 𝐺𝑔 ∈ V) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))))
76abbidv 2288 . . . . 5 ((𝐹 = 𝐺𝑔 ∈ V) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
87mpteq2dva 4079 . . . 4 (𝐹 = 𝐺 → (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
9 recseq 6285 . . . 4 ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) → recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
108, 9syl 14 . . 3 (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
1110reseq1d 4890 . 2 (𝐹 = 𝐺 → (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω))
12 df-frec 6370 . 2 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
13 df-frec 6370 . 2 frec(𝐺, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
1411, 12, 133eqtr4g 2228 1 (𝐹 = 𝐺 → frec(𝐹, 𝐴) = frec(𝐺, 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141  {cab 2156  wrex 2449  Vcvv 2730  c0 3414  cmpt 4050  suc csuc 4350  ωcom 4574  dom cdm 4611  cres 4613  cfv 5198  recscrecs 6283  freccfrec 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-res 4623  df-iota 5160  df-fv 5206  df-recs 6284  df-frec 6370
This theorem is referenced by:  frecuzrdgdom  10374  frecuzrdgfun  10376  frecuzrdgsuct  10380  seqeq1  10404  seqeq2  10405  seqeq3  10406  iseqvalcbv  10413  hashfz1  10717  ennnfonelemr  12378  ctinfom  12383  isomninn  14063  iswomninn  14082  ismkvnn  14085
  Copyright terms: Public domain W3C validator