ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freceq1 GIF version

Theorem freceq1 6383
Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
freceq1 (𝐹 = 𝐺 → frec(𝐹, 𝐴) = frec(𝐺, 𝐴))

Proof of Theorem freceq1
Dummy variables 𝑥 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . . . . . 11 ((𝐹 = 𝐺𝑔 ∈ V) → 𝐹 = 𝐺)
21fveq1d 5509 . . . . . . . . . 10 ((𝐹 = 𝐺𝑔 ∈ V) → (𝐹‘(𝑔𝑚)) = (𝐺‘(𝑔𝑚)))
32eleq2d 2245 . . . . . . . . 9 ((𝐹 = 𝐺𝑔 ∈ V) → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐺‘(𝑔𝑚))))
43anbi2d 464 . . . . . . . 8 ((𝐹 = 𝐺𝑔 ∈ V) → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚)))))
54rexbidv 2476 . . . . . . 7 ((𝐹 = 𝐺𝑔 ∈ V) → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚)))))
65orbi1d 791 . . . . . 6 ((𝐹 = 𝐺𝑔 ∈ V) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))))
76abbidv 2293 . . . . 5 ((𝐹 = 𝐺𝑔 ∈ V) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
87mpteq2dva 4088 . . . 4 (𝐹 = 𝐺 → (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
9 recseq 6297 . . . 4 ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) → recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
108, 9syl 14 . . 3 (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
1110reseq1d 4899 . 2 (𝐹 = 𝐺 → (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω))
12 df-frec 6382 . 2 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
13 df-frec 6382 . 2 frec(𝐺, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
1411, 12, 133eqtr4g 2233 1 (𝐹 = 𝐺 → frec(𝐹, 𝐴) = frec(𝐺, 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2146  {cab 2161  wrex 2454  Vcvv 2735  c0 3420  cmpt 4059  suc csuc 4359  ωcom 4583  dom cdm 4620  cres 4622  cfv 5208  recscrecs 6295  freccfrec 6381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-in 3133  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-res 4632  df-iota 5170  df-fv 5216  df-recs 6296  df-frec 6382
This theorem is referenced by:  frecuzrdgdom  10388  frecuzrdgfun  10390  frecuzrdgsuct  10394  seqeq1  10418  seqeq2  10419  seqeq3  10420  iseqvalcbv  10427  hashfz1  10731  ennnfonelemr  12391  ctinfom  12396  isomninn  14340  iswomninn  14359  ismkvnn  14362
  Copyright terms: Public domain W3C validator