ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freceq1 GIF version

Theorem freceq1 6393
Description: Equality theorem for the finite recursive definition generator. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
freceq1 (𝐹 = 𝐺 → frec(𝐹, 𝐴) = frec(𝐺, 𝐴))

Proof of Theorem freceq1
Dummy variables 𝑥 𝑔 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . . . . . 11 ((𝐹 = 𝐺𝑔 ∈ V) → 𝐹 = 𝐺)
21fveq1d 5518 . . . . . . . . . 10 ((𝐹 = 𝐺𝑔 ∈ V) → (𝐹‘(𝑔𝑚)) = (𝐺‘(𝑔𝑚)))
32eleq2d 2247 . . . . . . . . 9 ((𝐹 = 𝐺𝑔 ∈ V) → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐺‘(𝑔𝑚))))
43anbi2d 464 . . . . . . . 8 ((𝐹 = 𝐺𝑔 ∈ V) → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚)))))
54rexbidv 2478 . . . . . . 7 ((𝐹 = 𝐺𝑔 ∈ V) → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚)))))
65orbi1d 791 . . . . . 6 ((𝐹 = 𝐺𝑔 ∈ V) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))))
76abbidv 2295 . . . . 5 ((𝐹 = 𝐺𝑔 ∈ V) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
87mpteq2dva 4094 . . . 4 (𝐹 = 𝐺 → (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
9 recseq 6307 . . . 4 ((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) → recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
108, 9syl 14 . . 3 (𝐹 = 𝐺 → recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
1110reseq1d 4907 . 2 (𝐹 = 𝐺 → (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω))
12 df-frec 6392 . 2 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
13 df-frec 6392 . 2 frec(𝐺, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐺‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
1411, 12, 133eqtr4g 2235 1 (𝐹 = 𝐺 → frec(𝐹, 𝐴) = frec(𝐺, 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  {cab 2163  wrex 2456  Vcvv 2738  c0 3423  cmpt 4065  suc csuc 4366  ωcom 4590  dom cdm 4627  cres 4629  cfv 5217  recscrecs 6305  freccfrec 6391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-in 3136  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-res 4639  df-iota 5179  df-fv 5225  df-recs 6306  df-frec 6392
This theorem is referenced by:  frecuzrdgdom  10418  frecuzrdgfun  10420  frecuzrdgsuct  10424  seqeq1  10448  seqeq2  10449  seqeq3  10450  iseqvalcbv  10457  hashfz1  10763  ennnfonelemr  12424  ctinfom  12429  isomninn  14782  iswomninn  14801  ismkvnn  14804
  Copyright terms: Public domain W3C validator