ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuc GIF version

Theorem frecsuc 6348
Description: The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.)
Assertion
Ref Expression
frecsuc ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝑧,𝐹   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)

Proof of Theorem frecsuc
Dummy variables 𝑓 𝑔 𝑚 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 4783 . . . . . . . . 9 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
21eqeq1d 2166 . . . . . . . 8 (𝑓 = 𝑔 → (dom 𝑓 = suc 𝑛 ↔ dom 𝑔 = suc 𝑛))
3 fveq1 5464 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓𝑛) = (𝑔𝑛))
43fveq2d 5469 . . . . . . . . 9 (𝑓 = 𝑔 → (𝐹‘(𝑓𝑛)) = (𝐹‘(𝑔𝑛)))
54eleq2d 2227 . . . . . . . 8 (𝑓 = 𝑔 → (𝑦 ∈ (𝐹‘(𝑓𝑛)) ↔ 𝑦 ∈ (𝐹‘(𝑔𝑛))))
62, 5anbi12d 465 . . . . . . 7 (𝑓 = 𝑔 → ((dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ↔ (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛)))))
76rexbidv 2458 . . . . . 6 (𝑓 = 𝑔 → (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ↔ ∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛)))))
81eqeq1d 2166 . . . . . . 7 (𝑓 = 𝑔 → (dom 𝑓 = ∅ ↔ dom 𝑔 = ∅))
98anbi1d 461 . . . . . 6 (𝑓 = 𝑔 → ((dom 𝑓 = ∅ ∧ 𝑦𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑦𝐴)))
107, 9orbi12d 783 . . . . 5 (𝑓 = 𝑔 → ((∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴)) ↔ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))))
1110abbidv 2275 . . . 4 (𝑓 = 𝑔 → {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))} = {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
1211cbvmptv 4060 . . 3 (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
13 eleq1 2220 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ∈ (𝐹‘(𝑔𝑛)) ↔ 𝑥 ∈ (𝐹‘(𝑔𝑛))))
1413anbi2d 460 . . . . . . 7 (𝑦 = 𝑥 → ((dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ↔ (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛)))))
1514rexbidv 2458 . . . . . 6 (𝑦 = 𝑥 → (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ↔ ∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛)))))
16 eleq1 2220 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
1716anbi2d 460 . . . . . 6 (𝑦 = 𝑥 → ((dom 𝑔 = ∅ ∧ 𝑦𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑥𝐴)))
1815, 17orbi12d 783 . . . . 5 (𝑦 = 𝑥 → ((∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴)) ↔ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))))
1918cbvabv 2282 . . . 4 {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))} = {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}
2019mpteq2i 4051 . . 3 (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
21 suceq 4361 . . . . . . . . 9 (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚)
2221eqeq2d 2169 . . . . . . . 8 (𝑛 = 𝑚 → (dom 𝑔 = suc 𝑛 ↔ dom 𝑔 = suc 𝑚))
23 fveq2 5465 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
2423fveq2d 5469 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐹‘(𝑔𝑛)) = (𝐹‘(𝑔𝑚)))
2524eleq2d 2227 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥 ∈ (𝐹‘(𝑔𝑛)) ↔ 𝑥 ∈ (𝐹‘(𝑔𝑚))))
2622, 25anbi12d 465 . . . . . . 7 (𝑛 = 𝑚 → ((dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ↔ (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚)))))
2726cbvrexv 2681 . . . . . 6 (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ↔ ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))))
2827orbi1i 753 . . . . 5 ((∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)))
2928abbii 2273 . . . 4 {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}
3029mpteq2i 4051 . . 3 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3112, 20, 303eqtri 2182 . 2 (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3231frecsuclem 6347 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3a 963   = wceq 1335  wcel 2128  {cab 2143  wral 2435  wrex 2436  Vcvv 2712  c0 3394  cmpt 4025  suc csuc 4324  ωcom 4547  dom cdm 4583  cfv 5167  freccfrec 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-recs 6246  df-frec 6332
This theorem is referenced by:  frecrdg  6349  frec2uzsucd  10282  frec2uzrdg  10290  frecuzrdgsuc  10295  frecuzrdgg  10297  frecuzrdgsuctlem  10304  seq3val  10339  seqvalcd  10340
  Copyright terms: Public domain W3C validator