ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuc GIF version

Theorem frecsuc 6386
Description: The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.)
Assertion
Ref Expression
frecsuc ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝑧,𝐹   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)

Proof of Theorem frecsuc
Dummy variables 𝑓 𝑔 𝑚 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 4811 . . . . . . . . 9 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
21eqeq1d 2179 . . . . . . . 8 (𝑓 = 𝑔 → (dom 𝑓 = suc 𝑛 ↔ dom 𝑔 = suc 𝑛))
3 fveq1 5495 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓𝑛) = (𝑔𝑛))
43fveq2d 5500 . . . . . . . . 9 (𝑓 = 𝑔 → (𝐹‘(𝑓𝑛)) = (𝐹‘(𝑔𝑛)))
54eleq2d 2240 . . . . . . . 8 (𝑓 = 𝑔 → (𝑦 ∈ (𝐹‘(𝑓𝑛)) ↔ 𝑦 ∈ (𝐹‘(𝑔𝑛))))
62, 5anbi12d 470 . . . . . . 7 (𝑓 = 𝑔 → ((dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ↔ (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛)))))
76rexbidv 2471 . . . . . 6 (𝑓 = 𝑔 → (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ↔ ∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛)))))
81eqeq1d 2179 . . . . . . 7 (𝑓 = 𝑔 → (dom 𝑓 = ∅ ↔ dom 𝑔 = ∅))
98anbi1d 462 . . . . . 6 (𝑓 = 𝑔 → ((dom 𝑓 = ∅ ∧ 𝑦𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑦𝐴)))
107, 9orbi12d 788 . . . . 5 (𝑓 = 𝑔 → ((∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴)) ↔ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))))
1110abbidv 2288 . . . 4 (𝑓 = 𝑔 → {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))} = {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
1211cbvmptv 4085 . . 3 (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
13 eleq1 2233 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ∈ (𝐹‘(𝑔𝑛)) ↔ 𝑥 ∈ (𝐹‘(𝑔𝑛))))
1413anbi2d 461 . . . . . . 7 (𝑦 = 𝑥 → ((dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ↔ (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛)))))
1514rexbidv 2471 . . . . . 6 (𝑦 = 𝑥 → (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ↔ ∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛)))))
16 eleq1 2233 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
1716anbi2d 461 . . . . . 6 (𝑦 = 𝑥 → ((dom 𝑔 = ∅ ∧ 𝑦𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑥𝐴)))
1815, 17orbi12d 788 . . . . 5 (𝑦 = 𝑥 → ((∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴)) ↔ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))))
1918cbvabv 2295 . . . 4 {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))} = {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}
2019mpteq2i 4076 . . 3 (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
21 suceq 4387 . . . . . . . . 9 (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚)
2221eqeq2d 2182 . . . . . . . 8 (𝑛 = 𝑚 → (dom 𝑔 = suc 𝑛 ↔ dom 𝑔 = suc 𝑚))
23 fveq2 5496 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
2423fveq2d 5500 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐹‘(𝑔𝑛)) = (𝐹‘(𝑔𝑚)))
2524eleq2d 2240 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥 ∈ (𝐹‘(𝑔𝑛)) ↔ 𝑥 ∈ (𝐹‘(𝑔𝑚))))
2622, 25anbi12d 470 . . . . . . 7 (𝑛 = 𝑚 → ((dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ↔ (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚)))))
2726cbvrexv 2697 . . . . . 6 (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ↔ ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))))
2827orbi1i 758 . . . . 5 ((∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)))
2928abbii 2286 . . . 4 {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}
3029mpteq2i 4076 . . 3 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3112, 20, 303eqtri 2195 . 2 (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3231frecsuclem 6385 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  w3a 973   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  Vcvv 2730  c0 3414  cmpt 4050  suc csuc 4350  ωcom 4574  dom cdm 4611  cfv 5198  freccfrec 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-recs 6284  df-frec 6370
This theorem is referenced by:  frecrdg  6387  frec2uzsucd  10357  frec2uzrdg  10365  frecuzrdgsuc  10370  frecuzrdgg  10372  frecuzrdgsuctlem  10379  seq3val  10414  seqvalcd  10415
  Copyright terms: Public domain W3C validator