ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuc GIF version

Theorem frecsuc 6516
Description: The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.)
Assertion
Ref Expression
frecsuc ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝑧,𝐹   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)

Proof of Theorem frecsuc
Dummy variables 𝑓 𝑔 𝑚 𝑥 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 4897 . . . . . . . . 9 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
21eqeq1d 2216 . . . . . . . 8 (𝑓 = 𝑔 → (dom 𝑓 = suc 𝑛 ↔ dom 𝑔 = suc 𝑛))
3 fveq1 5598 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓𝑛) = (𝑔𝑛))
43fveq2d 5603 . . . . . . . . 9 (𝑓 = 𝑔 → (𝐹‘(𝑓𝑛)) = (𝐹‘(𝑔𝑛)))
54eleq2d 2277 . . . . . . . 8 (𝑓 = 𝑔 → (𝑦 ∈ (𝐹‘(𝑓𝑛)) ↔ 𝑦 ∈ (𝐹‘(𝑔𝑛))))
62, 5anbi12d 473 . . . . . . 7 (𝑓 = 𝑔 → ((dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ↔ (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛)))))
76rexbidv 2509 . . . . . 6 (𝑓 = 𝑔 → (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ↔ ∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛)))))
81eqeq1d 2216 . . . . . . 7 (𝑓 = 𝑔 → (dom 𝑓 = ∅ ↔ dom 𝑔 = ∅))
98anbi1d 465 . . . . . 6 (𝑓 = 𝑔 → ((dom 𝑓 = ∅ ∧ 𝑦𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑦𝐴)))
107, 9orbi12d 795 . . . . 5 (𝑓 = 𝑔 → ((∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴)) ↔ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))))
1110abbidv 2325 . . . 4 (𝑓 = 𝑔 → {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))} = {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
1211cbvmptv 4156 . . 3 (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))})
13 eleq1 2270 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦 ∈ (𝐹‘(𝑔𝑛)) ↔ 𝑥 ∈ (𝐹‘(𝑔𝑛))))
1413anbi2d 464 . . . . . . 7 (𝑦 = 𝑥 → ((dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ↔ (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛)))))
1514rexbidv 2509 . . . . . 6 (𝑦 = 𝑥 → (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ↔ ∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛)))))
16 eleq1 2270 . . . . . . 7 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
1716anbi2d 464 . . . . . 6 (𝑦 = 𝑥 → ((dom 𝑔 = ∅ ∧ 𝑦𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑥𝐴)))
1815, 17orbi12d 795 . . . . 5 (𝑦 = 𝑥 → ((∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴)) ↔ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))))
1918cbvabv 2332 . . . 4 {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))} = {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}
2019mpteq2i 4147 . . 3 (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑦 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
21 suceq 4467 . . . . . . . . 9 (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚)
2221eqeq2d 2219 . . . . . . . 8 (𝑛 = 𝑚 → (dom 𝑔 = suc 𝑛 ↔ dom 𝑔 = suc 𝑚))
23 fveq2 5599 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
2423fveq2d 5603 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐹‘(𝑔𝑛)) = (𝐹‘(𝑔𝑚)))
2524eleq2d 2277 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥 ∈ (𝐹‘(𝑔𝑛)) ↔ 𝑥 ∈ (𝐹‘(𝑔𝑚))))
2622, 25anbi12d 473 . . . . . . 7 (𝑛 = 𝑚 → ((dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ↔ (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚)))))
2726cbvrexv 2743 . . . . . 6 (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ↔ ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))))
2827orbi1i 765 . . . . 5 ((∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)))
2928abbii 2323 . . . 4 {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}
3029mpteq2i 4147 . . 3 (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛𝑥 ∈ (𝐹‘(𝑔𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3112, 20, 303eqtri 2232 . 2 (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛𝑦 ∈ (𝐹‘(𝑓𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3231frecsuclem 6515 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  w3a 981   = wceq 1373  wcel 2178  {cab 2193  wral 2486  wrex 2487  Vcvv 2776  c0 3468  cmpt 4121  suc csuc 4430  ωcom 4656  dom cdm 4693  cfv 5290  freccfrec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414  df-frec 6500
This theorem is referenced by:  frecrdg  6517  frec2uzsucd  10583  frec2uzrdg  10591  frecuzrdgsuc  10596  frecuzrdgg  10598  frecuzrdgsuctlem  10605  seq3val  10642  seqvalcd  10643
  Copyright terms: Public domain W3C validator