Step | Hyp | Ref
| Expression |
1 | | dmeq 4811 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔) |
2 | 1 | eqeq1d 2179 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (dom 𝑓 = suc 𝑛 ↔ dom 𝑔 = suc 𝑛)) |
3 | | fveq1 5495 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (𝑓‘𝑛) = (𝑔‘𝑛)) |
4 | 3 | fveq2d 5500 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (𝐹‘(𝑓‘𝑛)) = (𝐹‘(𝑔‘𝑛))) |
5 | 4 | eleq2d 2240 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑦 ∈ (𝐹‘(𝑓‘𝑛)) ↔ 𝑦 ∈ (𝐹‘(𝑔‘𝑛)))) |
6 | 2, 5 | anbi12d 470 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → ((dom 𝑓 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑓‘𝑛))) ↔ (dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))))) |
7 | 6 | rexbidv 2471 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑓‘𝑛))) ↔ ∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))))) |
8 | 1 | eqeq1d 2179 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (dom 𝑓 = ∅ ↔ dom 𝑔 = ∅)) |
9 | 8 | anbi1d 462 |
. . . . . 6
⊢ (𝑓 = 𝑔 → ((dom 𝑓 = ∅ ∧ 𝑦 ∈ 𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))) |
10 | 7, 9 | orbi12d 788 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑓‘𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦 ∈ 𝐴)) ↔ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴)))) |
11 | 10 | abbidv 2288 |
. . . 4
⊢ (𝑓 = 𝑔 → {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑓‘𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦 ∈ 𝐴))} = {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))}) |
12 | 11 | cbvmptv 4085 |
. . 3
⊢ (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑓‘𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦 ∈ 𝐴))}) = (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))}) |
13 | | eleq1 2233 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑦 ∈ (𝐹‘(𝑔‘𝑛)) ↔ 𝑥 ∈ (𝐹‘(𝑔‘𝑛)))) |
14 | 13 | anbi2d 461 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))) ↔ (dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))))) |
15 | 14 | rexbidv 2471 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))) ↔ ∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))))) |
16 | | eleq1 2233 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
17 | 16 | anbi2d 461 |
. . . . . 6
⊢ (𝑦 = 𝑥 → ((dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴) ↔ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))) |
18 | 15, 17 | orbi12d 788 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴)) ↔ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
19 | 18 | cbvabv 2295 |
. . . 4
⊢ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))} = {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} |
20 | 19 | mpteq2i 4076 |
. . 3
⊢ (𝑔 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑦 ∈ 𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
21 | | suceq 4387 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → suc 𝑛 = suc 𝑚) |
22 | 21 | eqeq2d 2182 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (dom 𝑔 = suc 𝑛 ↔ dom 𝑔 = suc 𝑚)) |
23 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝑔‘𝑛) = (𝑔‘𝑚)) |
24 | 23 | fveq2d 5500 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝐹‘(𝑔‘𝑛)) = (𝐹‘(𝑔‘𝑚))) |
25 | 24 | eleq2d 2240 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑥 ∈ (𝐹‘(𝑔‘𝑛)) ↔ 𝑥 ∈ (𝐹‘(𝑔‘𝑚)))) |
26 | 22, 25 | anbi12d 470 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))) ↔ (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))))) |
27 | 26 | cbvrexv 2697 |
. . . . . 6
⊢
(∃𝑛 ∈
ω (dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))) ↔ ∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚)))) |
28 | 27 | orbi1i 758 |
. . . . 5
⊢
((∃𝑛 ∈
ω (dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))) |
29 | 28 | abbii 2286 |
. . . 4
⊢ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} |
30 | 29 | mpteq2i 4076 |
. . 3
⊢ (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑛 ∈ ω (dom 𝑔 = suc 𝑛 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑛))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
31 | 12, 20, 30 | 3eqtri 2195 |
. 2
⊢ (𝑓 ∈ V ↦ {𝑦 ∣ (∃𝑛 ∈ ω (dom 𝑓 = suc 𝑛 ∧ 𝑦 ∈ (𝐹‘(𝑓‘𝑛))) ∨ (dom 𝑓 = ∅ ∧ 𝑦 ∈ 𝐴))}) = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
32 | 31 | frecsuclem 6385 |
1
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵))) |