ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexr GIF version

Theorem ecexr 6592
Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Proof of Theorem ecexr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elimag 5009 . . . . 5 (𝐴 ∈ (𝑅 “ {𝐵}) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴))
21ibi 176 . . . 4 (𝐴 ∈ (𝑅 “ {𝐵}) → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)
3 df-ec 6589 . . . 4 [𝐵]𝑅 = (𝑅 “ {𝐵})
42, 3eleq2s 2288 . . 3 (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)
5 df-rex 2478 . . . 4 (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 ↔ ∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴))
6 simpl 109 . . . . . 6 ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 ∈ {𝐵})
7 velsn 3635 . . . . . 6 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
86, 7sylib 122 . . . . 5 ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 = 𝐵)
98eximi 1611 . . . 4 (∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → ∃𝑥 𝑥 = 𝐵)
105, 9sylbi 121 . . 3 (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 → ∃𝑥 𝑥 = 𝐵)
114, 10syl 14 . 2 (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 𝑥 = 𝐵)
12 isset 2766 . 2 (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵)
1311, 12sylibr 134 1 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  wrex 2473  Vcvv 2760  {csn 3618   class class class wbr 4029  cima 4662  [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-ec 6589
This theorem is referenced by:  relelec  6629  ecdmn0m  6631
  Copyright terms: Public domain W3C validator