![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecexr | GIF version |
Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimag 4975 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)) | |
2 | 1 | ibi 176 | . . . 4 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴) |
3 | df-ec 6537 | . . . 4 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
4 | 2, 3 | eleq2s 2272 | . . 3 ⊢ (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴) |
5 | df-rex 2461 | . . . 4 ⊢ (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 ↔ ∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴)) | |
6 | simpl 109 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 ∈ {𝐵}) | |
7 | velsn 3610 | . . . . . 6 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
8 | 6, 7 | sylib 122 | . . . . 5 ⊢ ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 = 𝐵) |
9 | 8 | eximi 1600 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → ∃𝑥 𝑥 = 𝐵) |
10 | 5, 9 | sylbi 121 | . . 3 ⊢ (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 → ∃𝑥 𝑥 = 𝐵) |
11 | 4, 10 | syl 14 | . 2 ⊢ (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 𝑥 = 𝐵) |
12 | isset 2744 | . 2 ⊢ (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵) | |
13 | 11, 12 | sylibr 134 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 Vcvv 2738 {csn 3593 class class class wbr 4004 “ cima 4630 [cec 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-br 4005 df-opab 4066 df-xp 4633 df-cnv 4635 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-ec 6537 |
This theorem is referenced by: relelec 6575 ecdmn0m 6577 |
Copyright terms: Public domain | W3C validator |