| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecexr | GIF version | ||
| Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag 5048 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)) | |
| 2 | 1 | ibi 176 | . . . 4 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴) |
| 3 | df-ec 6652 | . . . 4 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
| 4 | 2, 3 | eleq2s 2304 | . . 3 ⊢ (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴) |
| 5 | df-rex 2494 | . . . 4 ⊢ (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 ↔ ∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴)) | |
| 6 | simpl 109 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 ∈ {𝐵}) | |
| 7 | velsn 3663 | . . . . . 6 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 8 | 6, 7 | sylib 122 | . . . . 5 ⊢ ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 = 𝐵) |
| 9 | 8 | eximi 1626 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → ∃𝑥 𝑥 = 𝐵) |
| 10 | 5, 9 | sylbi 121 | . . 3 ⊢ (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 → ∃𝑥 𝑥 = 𝐵) |
| 11 | 4, 10 | syl 14 | . 2 ⊢ (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 𝑥 = 𝐵) |
| 12 | isset 2786 | . 2 ⊢ (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵) | |
| 13 | 11, 12 | sylibr 134 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ∃wrex 2489 Vcvv 2779 {csn 3646 class class class wbr 4062 “ cima 4699 [cec 6648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-cnv 4704 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-ec 6652 |
| This theorem is referenced by: relelec 6692 ecdmn0m 6694 |
| Copyright terms: Public domain | W3C validator |