ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexr GIF version

Theorem ecexr 6518
Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Proof of Theorem ecexr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elimag 4957 . . . . 5 (𝐴 ∈ (𝑅 “ {𝐵}) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴))
21ibi 175 . . . 4 (𝐴 ∈ (𝑅 “ {𝐵}) → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)
3 df-ec 6515 . . . 4 [𝐵]𝑅 = (𝑅 “ {𝐵})
42, 3eleq2s 2265 . . 3 (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)
5 df-rex 2454 . . . 4 (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 ↔ ∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴))
6 simpl 108 . . . . . 6 ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 ∈ {𝐵})
7 velsn 3600 . . . . . 6 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
86, 7sylib 121 . . . . 5 ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 = 𝐵)
98eximi 1593 . . . 4 (∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → ∃𝑥 𝑥 = 𝐵)
105, 9sylbi 120 . . 3 (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 → ∃𝑥 𝑥 = 𝐵)
114, 10syl 14 . 2 (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 𝑥 = 𝐵)
12 isset 2736 . 2 (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵)
1311, 12sylibr 133 1 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  wrex 2449  Vcvv 2730  {csn 3583   class class class wbr 3989  cima 4614  [cec 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-ec 6515
This theorem is referenced by:  relelec  6553  ecdmn0m  6555
  Copyright terms: Public domain W3C validator