ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexr GIF version

Theorem ecexr 6597
Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Proof of Theorem ecexr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elimag 5013 . . . . 5 (𝐴 ∈ (𝑅 “ {𝐵}) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴))
21ibi 176 . . . 4 (𝐴 ∈ (𝑅 “ {𝐵}) → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)
3 df-ec 6594 . . . 4 [𝐵]𝑅 = (𝑅 “ {𝐵})
42, 3eleq2s 2291 . . 3 (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)
5 df-rex 2481 . . . 4 (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 ↔ ∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴))
6 simpl 109 . . . . . 6 ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 ∈ {𝐵})
7 velsn 3639 . . . . . 6 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
86, 7sylib 122 . . . . 5 ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 = 𝐵)
98eximi 1614 . . . 4 (∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → ∃𝑥 𝑥 = 𝐵)
105, 9sylbi 121 . . 3 (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 → ∃𝑥 𝑥 = 𝐵)
114, 10syl 14 . 2 (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 𝑥 = 𝐵)
12 isset 2769 . 2 (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵)
1311, 12sylibr 134 1 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wrex 2476  Vcvv 2763  {csn 3622   class class class wbr 4033  cima 4666  [cec 6590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594
This theorem is referenced by:  relelec  6634  ecdmn0m  6636
  Copyright terms: Public domain W3C validator