| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecexr | GIF version | ||
| Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimag 5014 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)) | |
| 2 | 1 | ibi 176 | . . . 4 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴) |
| 3 | df-ec 6603 | . . . 4 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
| 4 | 2, 3 | eleq2s 2291 | . . 3 ⊢ (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴) |
| 5 | df-rex 2481 | . . . 4 ⊢ (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 ↔ ∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴)) | |
| 6 | simpl 109 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 ∈ {𝐵}) | |
| 7 | velsn 3640 | . . . . . 6 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
| 8 | 6, 7 | sylib 122 | . . . . 5 ⊢ ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 = 𝐵) |
| 9 | 8 | eximi 1614 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → ∃𝑥 𝑥 = 𝐵) |
| 10 | 5, 9 | sylbi 121 | . . 3 ⊢ (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 → ∃𝑥 𝑥 = 𝐵) |
| 11 | 4, 10 | syl 14 | . 2 ⊢ (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 𝑥 = 𝐵) |
| 12 | isset 2769 | . 2 ⊢ (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵) | |
| 13 | 11, 12 | sylibr 134 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ∃wrex 2476 Vcvv 2763 {csn 3623 class class class wbr 4034 “ cima 4667 [cec 6599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-ec 6603 |
| This theorem is referenced by: relelec 6643 ecdmn0m 6645 |
| Copyright terms: Public domain | W3C validator |