ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecexr GIF version

Theorem ecexr 6693
Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Proof of Theorem ecexr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elimag 5072 . . . . 5 (𝐴 ∈ (𝑅 “ {𝐵}) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴))
21ibi 176 . . . 4 (𝐴 ∈ (𝑅 “ {𝐵}) → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)
3 df-ec 6690 . . . 4 [𝐵]𝑅 = (𝑅 “ {𝐵})
42, 3eleq2s 2324 . . 3 (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)
5 df-rex 2514 . . . 4 (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 ↔ ∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴))
6 simpl 109 . . . . . 6 ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 ∈ {𝐵})
7 velsn 3683 . . . . . 6 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
86, 7sylib 122 . . . . 5 ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 = 𝐵)
98eximi 1646 . . . 4 (∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → ∃𝑥 𝑥 = 𝐵)
105, 9sylbi 121 . . 3 (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 → ∃𝑥 𝑥 = 𝐵)
114, 10syl 14 . 2 (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 𝑥 = 𝐵)
12 isset 2806 . 2 (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵)
1311, 12sylibr 134 1 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  wrex 2509  Vcvv 2799  {csn 3666   class class class wbr 4083  cima 4722  [cec 6686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-ec 6690
This theorem is referenced by:  relelec  6730  ecdmn0m  6732
  Copyright terms: Public domain W3C validator