Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecexr | GIF version |
Description: An inhabited equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimag 4957 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴)) | |
2 | 1 | ibi 175 | . . . 4 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴) |
3 | df-ec 6515 | . . . 4 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
4 | 2, 3 | eleq2s 2265 | . . 3 ⊢ (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 ∈ {𝐵}𝑥𝑅𝐴) |
5 | df-rex 2454 | . . . 4 ⊢ (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 ↔ ∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴)) | |
6 | simpl 108 | . . . . . 6 ⊢ ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 ∈ {𝐵}) | |
7 | velsn 3600 | . . . . . 6 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
8 | 6, 7 | sylib 121 | . . . . 5 ⊢ ((𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → 𝑥 = 𝐵) |
9 | 8 | eximi 1593 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ {𝐵} ∧ 𝑥𝑅𝐴) → ∃𝑥 𝑥 = 𝐵) |
10 | 5, 9 | sylbi 120 | . . 3 ⊢ (∃𝑥 ∈ {𝐵}𝑥𝑅𝐴 → ∃𝑥 𝑥 = 𝐵) |
11 | 4, 10 | syl 14 | . 2 ⊢ (𝐴 ∈ [𝐵]𝑅 → ∃𝑥 𝑥 = 𝐵) |
12 | isset 2736 | . 2 ⊢ (𝐵 ∈ V ↔ ∃𝑥 𝑥 = 𝐵) | |
13 | 11, 12 | sylibr 133 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 Vcvv 2730 {csn 3583 class class class wbr 3989 “ cima 4614 [cec 6511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-ec 6515 |
This theorem is referenced by: relelec 6553 ecdmn0m 6555 |
Copyright terms: Public domain | W3C validator |