Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qliftf | GIF version |
Description: The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ V) |
Ref | Expression |
---|---|
qliftf | ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
2 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
3 | qlift.3 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
4 | qlift.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ V) | |
5 | 1, 2, 3, 4 | qliftlem 6579 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
6 | 1, 5, 2 | fliftf 5767 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) |
7 | df-qs 6507 | . . . . 5 ⊢ (𝑋 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} | |
8 | eqid 2165 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) | |
9 | 8 | rnmpt 4852 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = [𝑥]𝑅} |
10 | 7, 9 | eqtr4i 2189 | . . . 4 ⊢ (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅) |
11 | 10 | a1i 9 | . . 3 ⊢ (𝜑 → (𝑋 / 𝑅) = ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)) |
12 | 11 | feq2d 5325 | . 2 ⊢ (𝜑 → (𝐹:(𝑋 / 𝑅)⟶𝑌 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ [𝑥]𝑅)⟶𝑌)) |
13 | 6, 12 | bitr4d 190 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:(𝑋 / 𝑅)⟶𝑌)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {cab 2151 ∃wrex 2445 Vcvv 2726 〈cop 3579 ↦ cmpt 4043 ran crn 4605 Fun wfun 5182 ⟶wf 5184 Er wer 6498 [cec 6499 / cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-er 6501 df-ec 6503 df-qs 6507 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |