ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftf GIF version

Theorem qliftf 6757
Description: The domain and codomain of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftf (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋 ∈ V)
51, 2, 3, 4qliftlem 6750 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
61, 5, 2fliftf 5916 . 2 (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋 ↦ [𝑥]𝑅)⟶𝑌))
7 df-qs 6676 . . . . 5 (𝑋 / 𝑅) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = [𝑥]𝑅}
8 eqid 2229 . . . . . 6 (𝑥𝑋 ↦ [𝑥]𝑅) = (𝑥𝑋 ↦ [𝑥]𝑅)
98rnmpt 4968 . . . . 5 ran (𝑥𝑋 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = [𝑥]𝑅}
107, 9eqtr4i 2253 . . . 4 (𝑋 / 𝑅) = ran (𝑥𝑋 ↦ [𝑥]𝑅)
1110a1i 9 . . 3 (𝜑 → (𝑋 / 𝑅) = ran (𝑥𝑋 ↦ [𝑥]𝑅))
1211feq2d 5457 . 2 (𝜑 → (𝐹:(𝑋 / 𝑅)⟶𝑌𝐹:ran (𝑥𝑋 ↦ [𝑥]𝑅)⟶𝑌))
136, 12bitr4d 191 1 (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wrex 2509  Vcvv 2799  cop 3669  cmpt 4144  ran crn 4717  Fun wfun 5308  wf 5310   Er wer 6667  [cec 6668   / cqs 6669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-er 6670  df-ec 6672  df-qs 6676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator