| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qsinxp | GIF version | ||
| Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qsinxp | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecinxp 6704 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑥]𝑅 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))) | |
| 2 | 1 | eqeq2d 2218 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
| 3 | 2 | rexbidva 2504 | . . 3 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
| 4 | 3 | abbidv 2324 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))}) |
| 5 | df-qs 6633 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 6 | df-qs 6633 | . 2 ⊢ (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))} | |
| 7 | 4, 5, 6 | 3eqtr4g 2264 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 ∃wrex 2486 ∩ cin 3166 ⊆ wss 3167 × cxp 4677 “ cima 4682 [cec 6625 / cqs 6626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-ec 6629 df-qs 6633 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |