| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qsinxp | GIF version | ||
| Description: Restrict the equivalence relation in a quotient set to the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qsinxp | ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecinxp 6727 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝑥]𝑅 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))) | |
| 2 | 1 | eqeq2d 2221 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
| 3 | 2 | rexbidva 2507 | . . 3 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴)))) |
| 4 | 3 | abbidv 2327 | . 2 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))}) |
| 5 | df-qs 6656 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 6 | df-qs 6656 | . 2 ⊢ (𝐴 / (𝑅 ∩ (𝐴 × 𝐴))) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥](𝑅 ∩ (𝐴 × 𝐴))} | |
| 7 | 4, 5, 6 | 3eqtr4g 2267 | 1 ⊢ ((𝑅 “ 𝐴) ⊆ 𝐴 → (𝐴 / 𝑅) = (𝐴 / (𝑅 ∩ (𝐴 × 𝐴)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 {cab 2195 ∃wrex 2489 ∩ cin 3176 ⊆ wss 3177 × cxp 4694 “ cima 4699 [cec 6648 / cqs 6649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-cnv 4704 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-ec 6652 df-qs 6656 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |