| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > qseq2 | GIF version | ||
| Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) | 
| Ref | Expression | 
|---|---|
| qseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eceq2 6629 | . . . . 5 ⊢ (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵) | |
| 2 | 1 | eqeq2d 2208 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴 ↔ 𝑦 = [𝑥]𝐵)) | 
| 3 | 2 | rexbidv 2498 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵)) | 
| 4 | 3 | abbidv 2314 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵}) | 
| 5 | df-qs 6598 | . 2 ⊢ (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} | |
| 6 | df-qs 6598 | . 2 ⊢ (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵} | |
| 7 | 4, 5, 6 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 {cab 2182 ∃wrex 2476 [cec 6590 / cqs 6591 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-ec 6594 df-qs 6598 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |