| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qseq2 | GIF version | ||
| Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| qseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eceq2 6669 | . . . . 5 ⊢ (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵) | |
| 2 | 1 | eqeq2d 2218 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴 ↔ 𝑦 = [𝑥]𝐵)) |
| 3 | 2 | rexbidv 2508 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵)) |
| 4 | 3 | abbidv 2324 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵}) |
| 5 | df-qs 6638 | . 2 ⊢ (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} | |
| 6 | df-qs 6638 | . 2 ⊢ (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵} | |
| 7 | 4, 5, 6 | 3eqtr4g 2264 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 {cab 2192 ∃wrex 2486 [cec 6630 / cqs 6631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-cnv 4690 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-ec 6634 df-qs 6638 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |