Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qseq2 | GIF version |
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
qseq2 | ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq2 6550 | . . . . 5 ⊢ (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵) | |
2 | 1 | eqeq2d 2182 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴 ↔ 𝑦 = [𝑥]𝐵)) |
3 | 2 | rexbidv 2471 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵)) |
4 | 3 | abbidv 2288 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵}) |
5 | df-qs 6519 | . 2 ⊢ (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐴} | |
6 | df-qs 6519 | . 2 ⊢ (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = [𝑥]𝐵} | |
7 | 4, 5, 6 | 3eqtr4g 2228 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 {cab 2156 ∃wrex 2449 [cec 6511 / cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-ec 6515 df-qs 6519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |