ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq2 GIF version

Theorem qseq2 6643
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq2 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))

Proof of Theorem qseq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eceq2 6629 . . . . 5 (𝐴 = 𝐵 → [𝑥]𝐴 = [𝑥]𝐵)
21eqeq2d 2208 . . . 4 (𝐴 = 𝐵 → (𝑦 = [𝑥]𝐴𝑦 = [𝑥]𝐵))
32rexbidv 2498 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐶 𝑦 = [𝑥]𝐴 ↔ ∃𝑥𝐶 𝑦 = [𝑥]𝐵))
43abbidv 2314 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴} = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵})
5 df-qs 6598 . 2 (𝐶 / 𝐴) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐴}
6 df-qs 6598 . 2 (𝐶 / 𝐵) = {𝑦 ∣ ∃𝑥𝐶 𝑦 = [𝑥]𝐵}
74, 5, 63eqtr4g 2254 1 (𝐴 = 𝐵 → (𝐶 / 𝐴) = (𝐶 / 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {cab 2182  wrex 2476  [cec 6590   / cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594  df-qs 6598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator