ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsg GIF version

Theorem elqsg 6671
Description: Closed form of elqs 6672. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg (𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elqsg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2211 . . 3 (𝑦 = 𝐵 → (𝑦 = [𝑥]𝑅𝐵 = [𝑥]𝑅))
21rexbidv 2506 . 2 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
3 df-qs 6625 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
42, 3elab2g 2919 1 (𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wcel 2175  wrex 2484  [cec 6617   / cqs 6618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-qs 6625
This theorem is referenced by:  elqs  6672  elqsi  6673  ecelqsg  6674  quselbasg  13537
  Copyright terms: Public domain W3C validator