![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elqsg | GIF version |
Description: Closed form of elqs 6359. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
elqsg | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2095 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = [𝑥]𝑅 ↔ 𝐵 = [𝑥]𝑅)) | |
2 | 1 | rexbidv 2382 | . 2 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
3 | df-qs 6314 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
4 | 2, 3 | elab2g 2765 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1290 ∈ wcel 1439 ∃wrex 2361 [cec 6306 / cqs 6307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rex 2366 df-v 2624 df-qs 6314 |
This theorem is referenced by: elqs 6359 elqsi 6360 ecelqsg 6361 |
Copyright terms: Public domain | W3C validator |