![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > quslem | GIF version |
Description: The function in qusval 12743 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusval.u | β’ (π β π = (π /s βΌ )) |
qusval.v | β’ (π β π = (Baseβπ )) |
qusval.f | β’ πΉ = (π₯ β π β¦ [π₯] βΌ ) |
qusval.e | β’ (π β βΌ β π) |
qusval.r | β’ (π β π β π) |
Ref | Expression |
---|---|
quslem | β’ (π β πΉ:πβontoβ(π / βΌ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusval.e | . . . . . 6 β’ (π β βΌ β π) | |
2 | ecexg 6538 | . . . . . 6 β’ ( βΌ β π β [π₯] βΌ β V) | |
3 | 1, 2 | syl 14 | . . . . 5 β’ (π β [π₯] βΌ β V) |
4 | 3 | ralrimivw 2551 | . . . 4 β’ (π β βπ₯ β π [π₯] βΌ β V) |
5 | qusval.f | . . . . 5 β’ πΉ = (π₯ β π β¦ [π₯] βΌ ) | |
6 | 5 | fnmpt 5342 | . . . 4 β’ (βπ₯ β π [π₯] βΌ β V β πΉ Fn π) |
7 | 4, 6 | syl 14 | . . 3 β’ (π β πΉ Fn π) |
8 | dffn4 5444 | . . 3 β’ (πΉ Fn π β πΉ:πβontoβran πΉ) | |
9 | 7, 8 | sylib 122 | . 2 β’ (π β πΉ:πβontoβran πΉ) |
10 | 5 | rnmpt 4875 | . . . 4 β’ ran πΉ = {π¦ β£ βπ₯ β π π¦ = [π₯] βΌ } |
11 | df-qs 6540 | . . . 4 β’ (π / βΌ ) = {π¦ β£ βπ₯ β π π¦ = [π₯] βΌ } | |
12 | 10, 11 | eqtr4i 2201 | . . 3 β’ ran πΉ = (π / βΌ ) |
13 | foeq3 5436 | . . 3 β’ (ran πΉ = (π / βΌ ) β (πΉ:πβontoβran πΉ β πΉ:πβontoβ(π / βΌ ))) | |
14 | 12, 13 | ax-mp 5 | . 2 β’ (πΉ:πβontoβran πΉ β πΉ:πβontoβ(π / βΌ )) |
15 | 9, 14 | sylib 122 | 1 β’ (π β πΉ:πβontoβ(π / βΌ )) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β wb 105 = wceq 1353 β wcel 2148 {cab 2163 βwral 2455 βwrex 2456 Vcvv 2737 β¦ cmpt 4064 ran crn 4627 Fn wfn 5211 βontoβwfo 5214 βcfv 5216 (class class class)co 5874 [cec 6532 / cqs 6533 Basecbs 12461 /s cqus 12720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-fun 5218 df-fn 5219 df-fo 5222 df-ec 6536 df-qs 6540 |
This theorem is referenced by: qusbas 12746 qusaddvallemg 12751 qusaddflemg 12752 qusaddval 12753 qusaddf 12754 qusmulval 12755 qusmulf 12756 |
Copyright terms: Public domain | W3C validator |