![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > quslem | GIF version |
Description: The function in qusval 12762 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
quslem | ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusval.e | . . . . . 6 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
2 | ecexg 6553 | . . . . . 6 ⊢ ( ∼ ∈ 𝑊 → [𝑥] ∼ ∈ V) | |
3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → [𝑥] ∼ ∈ V) |
4 | 3 | ralrimivw 2561 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V) |
5 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
6 | 5 | fnmpt 5354 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V → 𝐹 Fn 𝑉) |
7 | 4, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
8 | dffn4 5456 | . . 3 ⊢ (𝐹 Fn 𝑉 ↔ 𝐹:𝑉–onto→ran 𝐹) | |
9 | 7, 8 | sylib 122 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→ran 𝐹) |
10 | 5 | rnmpt 4887 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } |
11 | df-qs 6555 | . . . 4 ⊢ (𝑉 / ∼ ) = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } | |
12 | 10, 11 | eqtr4i 2211 | . . 3 ⊢ ran 𝐹 = (𝑉 / ∼ ) |
13 | foeq3 5448 | . . 3 ⊢ (ran 𝐹 = (𝑉 / ∼ ) → (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ ))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ )) |
15 | 9, 14 | sylib 122 | 1 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ∈ wcel 2158 {cab 2173 ∀wral 2465 ∃wrex 2466 Vcvv 2749 ↦ cmpt 4076 ran crn 4639 Fn wfn 5223 –onto→wfo 5226 ‘cfv 5228 (class class class)co 5888 [cec 6547 / cqs 6548 Basecbs 12476 /s cqus 12739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-fun 5230 df-fn 5231 df-fo 5234 df-ec 6551 df-qs 6555 |
This theorem is referenced by: qusbas 12766 qusaddvallemg 12771 qusaddflemg 12772 qusaddval 12773 qusaddf 12774 qusmulval 12775 qusmulf 12776 qusgrp2 13008 qusrng 13210 qusring2 13314 |
Copyright terms: Public domain | W3C validator |