![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > quslem | GIF version |
Description: The function in qusval 12909 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
quslem | ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusval.e | . . . . . 6 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
2 | ecexg 6593 | . . . . . 6 ⊢ ( ∼ ∈ 𝑊 → [𝑥] ∼ ∈ V) | |
3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → [𝑥] ∼ ∈ V) |
4 | 3 | ralrimivw 2568 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V) |
5 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
6 | 5 | fnmpt 5381 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V → 𝐹 Fn 𝑉) |
7 | 4, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
8 | dffn4 5483 | . . 3 ⊢ (𝐹 Fn 𝑉 ↔ 𝐹:𝑉–onto→ran 𝐹) | |
9 | 7, 8 | sylib 122 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→ran 𝐹) |
10 | 5 | rnmpt 4911 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } |
11 | df-qs 6595 | . . . 4 ⊢ (𝑉 / ∼ ) = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } | |
12 | 10, 11 | eqtr4i 2217 | . . 3 ⊢ ran 𝐹 = (𝑉 / ∼ ) |
13 | foeq3 5475 | . . 3 ⊢ (ran 𝐹 = (𝑉 / ∼ ) → (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ ))) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ )) |
15 | 9, 14 | sylib 122 | 1 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∃wrex 2473 Vcvv 2760 ↦ cmpt 4091 ran crn 4661 Fn wfn 5250 –onto→wfo 5253 ‘cfv 5255 (class class class)co 5919 [cec 6587 / cqs 6588 Basecbs 12621 /s cqus 12886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-fun 5257 df-fn 5258 df-fo 5261 df-ec 6591 df-qs 6595 |
This theorem is referenced by: qusbas 12913 qusaddvallemg 12919 qusaddflemg 12920 qusaddval 12921 qusaddf 12922 qusmulval 12923 qusmulf 12924 qusgrp2 13186 qusrng 13457 qusring2 13565 znzrhfo 14147 |
Copyright terms: Public domain | W3C validator |