| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > quslem | GIF version | ||
| Description: The function in qusval 13230 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusval.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusval.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| qusval.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
| qusval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| quslem | ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusval.e | . . . . . 6 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
| 2 | ecexg 6637 | . . . . . 6 ⊢ ( ∼ ∈ 𝑊 → [𝑥] ∼ ∈ V) | |
| 3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → [𝑥] ∼ ∈ V) |
| 4 | 3 | ralrimivw 2581 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V) |
| 5 | qusval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 6 | 5 | fnmpt 5412 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 [𝑥] ∼ ∈ V → 𝐹 Fn 𝑉) |
| 7 | 4, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝑉) |
| 8 | dffn4 5516 | . . 3 ⊢ (𝐹 Fn 𝑉 ↔ 𝐹:𝑉–onto→ran 𝐹) | |
| 9 | 7, 8 | sylib 122 | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→ran 𝐹) |
| 10 | 5 | rnmpt 4935 | . . . 4 ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } |
| 11 | df-qs 6639 | . . . 4 ⊢ (𝑉 / ∼ ) = {𝑦 ∣ ∃𝑥 ∈ 𝑉 𝑦 = [𝑥] ∼ } | |
| 12 | 10, 11 | eqtr4i 2230 | . . 3 ⊢ ran 𝐹 = (𝑉 / ∼ ) |
| 13 | foeq3 5508 | . . 3 ⊢ (ran 𝐹 = (𝑉 / ∼ ) → (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ ))) | |
| 14 | 12, 13 | ax-mp 5 | . 2 ⊢ (𝐹:𝑉–onto→ran 𝐹 ↔ 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| 15 | 9, 14 | sylib 122 | 1 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / ∼ )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∃wrex 2486 Vcvv 2773 ↦ cmpt 4113 ran crn 4684 Fn wfn 5275 –onto→wfo 5278 ‘cfv 5280 (class class class)co 5957 [cec 6631 / cqs 6632 Basecbs 12907 /s cqus 13207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-fun 5282 df-fn 5283 df-fo 5286 df-ec 6635 df-qs 6639 |
| This theorem is referenced by: qusbas 13234 qusaddvallemg 13240 qusaddflemg 13241 qusaddval 13242 qusaddf 13243 qusmulval 13244 qusmulf 13245 qusgrp2 13524 qusrng 13795 qusring2 13903 znzrhfo 14485 |
| Copyright terms: Public domain | W3C validator |