ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quslem GIF version

Theorem quslem 12763
Description: The function in qusval 12762 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u (𝜑𝑈 = (𝑅 /s ))
qusval.v (𝜑𝑉 = (Base‘𝑅))
qusval.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
qusval.e (𝜑𝑊)
qusval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
quslem (𝜑𝐹:𝑉onto→(𝑉 / ))
Distinct variable groups:   𝑥,   𝜑,𝑥   𝑥,𝑅   𝑥,𝑉
Allowed substitution hints:   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem quslem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6 (𝜑𝑊)
2 ecexg 6553 . . . . . 6 ( 𝑊 → [𝑥] ∈ V)
31, 2syl 14 . . . . 5 (𝜑 → [𝑥] ∈ V)
43ralrimivw 2561 . . . 4 (𝜑 → ∀𝑥𝑉 [𝑥] ∈ V)
5 qusval.f . . . . 5 𝐹 = (𝑥𝑉 ↦ [𝑥] )
65fnmpt 5354 . . . 4 (∀𝑥𝑉 [𝑥] ∈ V → 𝐹 Fn 𝑉)
74, 6syl 14 . . 3 (𝜑𝐹 Fn 𝑉)
8 dffn4 5456 . . 3 (𝐹 Fn 𝑉𝐹:𝑉onto→ran 𝐹)
97, 8sylib 122 . 2 (𝜑𝐹:𝑉onto→ran 𝐹)
105rnmpt 4887 . . . 4 ran 𝐹 = {𝑦 ∣ ∃𝑥𝑉 𝑦 = [𝑥] }
11 df-qs 6555 . . . 4 (𝑉 / ) = {𝑦 ∣ ∃𝑥𝑉 𝑦 = [𝑥] }
1210, 11eqtr4i 2211 . . 3 ran 𝐹 = (𝑉 / )
13 foeq3 5448 . . 3 (ran 𝐹 = (𝑉 / ) → (𝐹:𝑉onto→ran 𝐹𝐹:𝑉onto→(𝑉 / )))
1412, 13ax-mp 5 . 2 (𝐹:𝑉onto→ran 𝐹𝐹:𝑉onto→(𝑉 / ))
159, 14sylib 122 1 (𝜑𝐹:𝑉onto→(𝑉 / ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1363  wcel 2158  {cab 2173  wral 2465  wrex 2466  Vcvv 2749  cmpt 4076  ran crn 4639   Fn wfn 5223  ontowfo 5226  cfv 5228  (class class class)co 5888  [cec 6547   / cqs 6548  Basecbs 12476   /s cqus 12739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-fun 5230  df-fn 5231  df-fo 5234  df-ec 6551  df-qs 6555
This theorem is referenced by:  qusbas  12766  qusaddvallemg  12771  qusaddflemg  12772  qusaddval  12773  qusaddf  12774  qusmulval  12775  qusmulf  12776  qusgrp2  13008  qusrng  13210  qusring2  13314
  Copyright terms: Public domain W3C validator