ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  quslem GIF version

Theorem quslem 12744
Description: The function in qusval 12743 is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
qusval.u (πœ‘ β†’ π‘ˆ = (𝑅 /s ∼ ))
qusval.v (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘…))
qusval.f 𝐹 = (π‘₯ ∈ 𝑉 ↦ [π‘₯] ∼ )
qusval.e (πœ‘ β†’ ∼ ∈ π‘Š)
qusval.r (πœ‘ β†’ 𝑅 ∈ 𝑍)
Assertion
Ref Expression
quslem (πœ‘ β†’ 𝐹:𝑉–ontoβ†’(𝑉 / ∼ ))
Distinct variable groups:   π‘₯, ∼   πœ‘,π‘₯   π‘₯,𝑅   π‘₯,𝑉
Allowed substitution hints:   π‘ˆ(π‘₯)   𝐹(π‘₯)   π‘Š(π‘₯)   𝑍(π‘₯)

Proof of Theorem quslem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qusval.e . . . . . 6 (πœ‘ β†’ ∼ ∈ π‘Š)
2 ecexg 6538 . . . . . 6 ( ∼ ∈ π‘Š β†’ [π‘₯] ∼ ∈ V)
31, 2syl 14 . . . . 5 (πœ‘ β†’ [π‘₯] ∼ ∈ V)
43ralrimivw 2551 . . . 4 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑉 [π‘₯] ∼ ∈ V)
5 qusval.f . . . . 5 𝐹 = (π‘₯ ∈ 𝑉 ↦ [π‘₯] ∼ )
65fnmpt 5342 . . . 4 (βˆ€π‘₯ ∈ 𝑉 [π‘₯] ∼ ∈ V β†’ 𝐹 Fn 𝑉)
74, 6syl 14 . . 3 (πœ‘ β†’ 𝐹 Fn 𝑉)
8 dffn4 5444 . . 3 (𝐹 Fn 𝑉 ↔ 𝐹:𝑉–ontoβ†’ran 𝐹)
97, 8sylib 122 . 2 (πœ‘ β†’ 𝐹:𝑉–ontoβ†’ran 𝐹)
105rnmpt 4875 . . . 4 ran 𝐹 = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑉 𝑦 = [π‘₯] ∼ }
11 df-qs 6540 . . . 4 (𝑉 / ∼ ) = {𝑦 ∣ βˆƒπ‘₯ ∈ 𝑉 𝑦 = [π‘₯] ∼ }
1210, 11eqtr4i 2201 . . 3 ran 𝐹 = (𝑉 / ∼ )
13 foeq3 5436 . . 3 (ran 𝐹 = (𝑉 / ∼ ) β†’ (𝐹:𝑉–ontoβ†’ran 𝐹 ↔ 𝐹:𝑉–ontoβ†’(𝑉 / ∼ )))
1412, 13ax-mp 5 . 2 (𝐹:𝑉–ontoβ†’ran 𝐹 ↔ 𝐹:𝑉–ontoβ†’(𝑉 / ∼ ))
159, 14sylib 122 1 (πœ‘ β†’ 𝐹:𝑉–ontoβ†’(𝑉 / ∼ ))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ↔ wb 105   = wceq 1353   ∈ wcel 2148  {cab 2163  βˆ€wral 2455  βˆƒwrex 2456  Vcvv 2737   ↦ cmpt 4064  ran crn 4627   Fn wfn 5211  β€“ontoβ†’wfo 5214  β€˜cfv 5216  (class class class)co 5874  [cec 6532   / cqs 6533  Basecbs 12461   /s cqus 12720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-fun 5218  df-fn 5219  df-fo 5222  df-ec 6536  df-qs 6540
This theorem is referenced by:  qusbas  12746  qusaddvallemg  12751  qusaddflemg  12752  qusaddval  12753  qusaddf  12754  qusmulval  12755  qusmulf  12756
  Copyright terms: Public domain W3C validator