| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniqs | GIF version | ||
| Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.) |
| Ref | Expression |
|---|---|
| uniqs | ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecexg 6596 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → [𝑥]𝑅 ∈ V) | |
| 2 | 1 | ralrimivw 2571 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V) |
| 3 | dfiun2g 3948 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 [𝑥]𝑅 ∈ V → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅}) |
| 5 | 4 | eqcomd 2202 | . 2 ⊢ (𝑅 ∈ 𝑉 → ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅) |
| 6 | df-qs 6598 | . . 3 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 7 | 6 | unieqi 3849 | . 2 ⊢ ∪ (𝐴 / 𝑅) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
| 8 | df-ec 6594 | . . . . 5 ⊢ [𝑥]𝑅 = (𝑅 “ {𝑥}) | |
| 9 | 8 | a1i 9 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥})) |
| 10 | 9 | iuneq2i 3934 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) |
| 11 | imaiun 5807 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = ∪ 𝑥 ∈ 𝐴 (𝑅 “ {𝑥}) | |
| 12 | iunid 3972 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 13 | 12 | imaeq2i 5007 | . . 3 ⊢ (𝑅 “ ∪ 𝑥 ∈ 𝐴 {𝑥}) = (𝑅 “ 𝐴) |
| 14 | 10, 11, 13 | 3eqtr2ri 2224 | . 2 ⊢ (𝑅 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 [𝑥]𝑅 |
| 15 | 5, 7, 14 | 3eqtr4g 2254 | 1 ⊢ (𝑅 ∈ 𝑉 → ∪ (𝐴 / 𝑅) = (𝑅 “ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 Vcvv 2763 {csn 3622 ∪ cuni 3839 ∪ ciun 3916 “ cima 4666 [cec 6590 / cqs 6591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-ec 6594 df-qs 6598 |
| This theorem is referenced by: uniqs2 6654 ecqs 6656 |
| Copyright terms: Public domain | W3C validator |