ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs GIF version

Theorem uniqs 6652
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
Assertion
Ref Expression
uniqs (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))

Proof of Theorem uniqs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecexg 6596 . . . . 5 (𝑅𝑉 → [𝑥]𝑅 ∈ V)
21ralrimivw 2571 . . . 4 (𝑅𝑉 → ∀𝑥𝐴 [𝑥]𝑅 ∈ V)
3 dfiun2g 3948 . . . 4 (∀𝑥𝐴 [𝑥]𝑅 ∈ V → 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
42, 3syl 14 . . 3 (𝑅𝑉 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
54eqcomd 2202 . 2 (𝑅𝑉 {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} = 𝑥𝐴 [𝑥]𝑅)
6 df-qs 6598 . . 3 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
76unieqi 3849 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
8 df-ec 6594 . . . . 5 [𝑥]𝑅 = (𝑅 “ {𝑥})
98a1i 9 . . . 4 (𝑥𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥}))
109iuneq2i 3934 . . 3 𝑥𝐴 [𝑥]𝑅 = 𝑥𝐴 (𝑅 “ {𝑥})
11 imaiun 5807 . . 3 (𝑅 𝑥𝐴 {𝑥}) = 𝑥𝐴 (𝑅 “ {𝑥})
12 iunid 3972 . . . 4 𝑥𝐴 {𝑥} = 𝐴
1312imaeq2i 5007 . . 3 (𝑅 𝑥𝐴 {𝑥}) = (𝑅𝐴)
1410, 11, 133eqtr2ri 2224 . 2 (𝑅𝐴) = 𝑥𝐴 [𝑥]𝑅
155, 7, 143eqtr4g 2254 1 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  {csn 3622   cuni 3839   ciun 3916  cima 4666  [cec 6590   / cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594  df-qs 6598
This theorem is referenced by:  uniqs2  6654  ecqs  6656
  Copyright terms: Public domain W3C validator