ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs GIF version

Theorem uniqs 6647
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
Assertion
Ref Expression
uniqs (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))

Proof of Theorem uniqs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecexg 6591 . . . . 5 (𝑅𝑉 → [𝑥]𝑅 ∈ V)
21ralrimivw 2568 . . . 4 (𝑅𝑉 → ∀𝑥𝐴 [𝑥]𝑅 ∈ V)
3 dfiun2g 3944 . . . 4 (∀𝑥𝐴 [𝑥]𝑅 ∈ V → 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
42, 3syl 14 . . 3 (𝑅𝑉 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
54eqcomd 2199 . 2 (𝑅𝑉 {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} = 𝑥𝐴 [𝑥]𝑅)
6 df-qs 6593 . . 3 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
76unieqi 3845 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
8 df-ec 6589 . . . . 5 [𝑥]𝑅 = (𝑅 “ {𝑥})
98a1i 9 . . . 4 (𝑥𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥}))
109iuneq2i 3930 . . 3 𝑥𝐴 [𝑥]𝑅 = 𝑥𝐴 (𝑅 “ {𝑥})
11 imaiun 5803 . . 3 (𝑅 𝑥𝐴 {𝑥}) = 𝑥𝐴 (𝑅 “ {𝑥})
12 iunid 3968 . . . 4 𝑥𝐴 {𝑥} = 𝐴
1312imaeq2i 5003 . . 3 (𝑅 𝑥𝐴 {𝑥}) = (𝑅𝐴)
1410, 11, 133eqtr2ri 2221 . 2 (𝑅𝐴) = 𝑥𝐴 [𝑥]𝑅
155, 7, 143eqtr4g 2251 1 (𝑅𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  {csn 3618   cuni 3835   ciun 3912  cima 4662  [cec 6585   / cqs 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-ec 6589  df-qs 6593
This theorem is referenced by:  uniqs2  6649  ecqs  6651
  Copyright terms: Public domain W3C validator