ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qseq1 GIF version

Theorem qseq1 6700
Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
qseq1 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))

Proof of Theorem qseq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2709 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦 = [𝑥]𝐶 ↔ ∃𝑥𝐵 𝑦 = [𝑥]𝐶))
21abbidv 2327 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶} = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶})
3 df-qs 6656 . 2 (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝐶}
4 df-qs 6656 . 2 (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥𝐵 𝑦 = [𝑥]𝐶}
52, 3, 43eqtr4g 2267 1 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  {cab 2195  wrex 2489  [cec 6648   / cqs 6649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-qs 6656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator