| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qseq1 | GIF version | ||
| Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| qseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2709 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶)) | |
| 2 | 1 | abbidv 2327 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶}) |
| 3 | df-qs 6656 | . 2 ⊢ (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} | |
| 4 | df-qs 6656 | . 2 ⊢ (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶} | |
| 5 | 2, 3, 4 | 3eqtr4g 2267 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 {cab 2195 ∃wrex 2489 [cec 6648 / cqs 6649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-qs 6656 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |