| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snec | GIF version | ||
| Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| snec.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| snec | ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snec.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | eceq1 6627 | . . . . 5 ⊢ (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅) | |
| 3 | 2 | eqeq2d 2208 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅)) | 
| 4 | 1, 3 | rexsn 3666 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅) | 
| 5 | 4 | abbii 2312 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} | 
| 6 | df-qs 6598 | . 2 ⊢ ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} | |
| 7 | df-sn 3628 | . 2 ⊢ {[𝐴]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2228 | 1 ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 {cab 2182 ∃wrex 2476 Vcvv 2763 {csn 3622 [cec 6590 / cqs 6591 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-ec 6594 df-qs 6598 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |