| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snec | GIF version | ||
| Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| snec.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snec | ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snec.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | eceq1 6654 | . . . . 5 ⊢ (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅) | |
| 3 | 2 | eqeq2d 2216 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅)) |
| 4 | 1, 3 | rexsn 3676 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅) |
| 5 | 4 | abbii 2320 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} |
| 6 | df-qs 6625 | . 2 ⊢ ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} | |
| 7 | df-sn 3638 | . 2 ⊢ {[𝐴]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2236 | 1 ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 {cab 2190 ∃wrex 2484 Vcvv 2771 {csn 3632 [cec 6617 / cqs 6618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-ec 6621 df-qs 6625 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |