Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snec | GIF version |
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
snec.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snec | ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snec.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | eceq1 6560 | . . . . 5 ⊢ (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅) | |
3 | 2 | eqeq2d 2187 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅)) |
4 | 1, 3 | rexsn 3633 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅 ↔ 𝑦 = [𝐴]𝑅) |
5 | 4 | abbii 2291 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} |
6 | df-qs 6531 | . 2 ⊢ ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} | |
7 | df-sn 3595 | . 2 ⊢ {[𝐴]𝑅} = {𝑦 ∣ 𝑦 = [𝐴]𝑅} | |
8 | 5, 6, 7 | 3eqtr4ri 2207 | 1 ⊢ {[𝐴]𝑅} = ({𝐴} / 𝑅) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 {cab 2161 ∃wrex 2454 Vcvv 2735 {csn 3589 [cec 6523 / cqs 6524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-ec 6527 df-qs 6531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |