ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snec GIF version

Theorem snec 6586
Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
snec.1 𝐴 ∈ V
Assertion
Ref Expression
snec {[𝐴]𝑅} = ({𝐴} / 𝑅)

Proof of Theorem snec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snec.1 . . . 4 𝐴 ∈ V
2 eceq1 6560 . . . . 5 (𝑥 = 𝐴 → [𝑥]𝑅 = [𝐴]𝑅)
32eqeq2d 2187 . . . 4 (𝑥 = 𝐴 → (𝑦 = [𝑥]𝑅𝑦 = [𝐴]𝑅))
41, 3rexsn 3633 . . 3 (∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅𝑦 = [𝐴]𝑅)
54abbii 2291 . 2 {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅} = {𝑦𝑦 = [𝐴]𝑅}
6 df-qs 6531 . 2 ({𝐴} / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑦 = [𝑥]𝑅}
7 df-sn 3595 . 2 {[𝐴]𝑅} = {𝑦𝑦 = [𝐴]𝑅}
85, 6, 73eqtr4ri 2207 1 {[𝐴]𝑅} = ({𝐴} / 𝑅)
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2146  {cab 2161  wrex 2454  Vcvv 2735  {csn 3589  [cec 6523   / cqs 6524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-ec 6527  df-qs 6531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator