Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > we0 | GIF version |
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
we0 | ⊢ 𝑅 We ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fr0 4336 | . 2 ⊢ 𝑅 Fr ∅ | |
2 | ral0 3516 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | |
3 | df-wetr 4319 | . 2 ⊢ (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
4 | 1, 2, 3 | mpbir2an 937 | 1 ⊢ 𝑅 We ∅ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wral 2448 ∅c0 3414 class class class wbr 3989 Fr wfr 4313 We wwe 4315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-frfor 4316 df-frind 4317 df-wetr 4319 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |