![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > we0 | GIF version |
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.) |
Ref | Expression |
---|---|
we0 | ⊢ 𝑅 We ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fr0 4202 | . 2 ⊢ 𝑅 Fr ∅ | |
2 | ral0 3403 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) | |
3 | df-wetr 4185 | . 2 ⊢ (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
4 | 1, 2, 3 | mpbir2an 891 | 1 ⊢ 𝑅 We ∅ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wral 2370 ∅c0 3302 class class class wbr 3867 Fr wfr 4179 We wwe 4181 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-v 2635 df-dif 3015 df-in 3019 df-ss 3026 df-nul 3303 df-frfor 4182 df-frind 4183 df-wetr 4185 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |