ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  we0 GIF version

Theorem we0 4396
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
we0 𝑅 We ∅

Proof of Theorem we0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fr0 4386 . 2 𝑅 Fr ∅
2 ral0 3552 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
3 df-wetr 4369 . 2 (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
41, 2, 3mpbir2an 944 1 𝑅 We ∅
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wral 2475  c0 3450   class class class wbr 4033   Fr wfr 4363   We wwe 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-frfor 4366  df-frind 4367  df-wetr 4369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator