ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  we0 GIF version

Theorem we0 4429
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
we0 𝑅 We ∅

Proof of Theorem we0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fr0 4419 . 2 𝑅 Fr ∅
2 ral0 3573 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
3 df-wetr 4402 . 2 (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
41, 2, 3mpbir2an 947 1 𝑅 We ∅
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wral 2488  c0 3471   class class class wbr 4062   Fr wfr 4396   We wwe 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-dif 3179  df-in 3183  df-ss 3190  df-nul 3472  df-frfor 4399  df-frind 4400  df-wetr 4402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator