ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  we0 GIF version

Theorem we0 4339
Description: Any relation is a well-ordering of the empty set. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
we0 𝑅 We ∅

Proof of Theorem we0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fr0 4329 . 2 𝑅 Fr ∅
2 ral0 3510 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)
3 df-wetr 4312 . 2 (𝑅 We ∅ ↔ (𝑅 Fr ∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
41, 2, 3mpbir2an 932 1 𝑅 We ∅
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wral 2444  c0 3409   class class class wbr 3982   Fr wfr 4306   We wwe 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-frfor 4309  df-frind 4310  df-wetr 4312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator