![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > wepo | GIF version |
Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.) |
Ref | Expression |
---|---|
wepo | ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 4376 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
2 | frirrg 4368 | . . . 4 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | |
3 | 1, 2 | syl3an1 1282 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
4 | 3 | 3expa 1205 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
5 | df-3an 982 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴)) | |
6 | df-wetr 4352 | . . . . . . . . . 10 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
7 | 6 | simprbi 275 | . . . . . . . . 9 ⊢ (𝑅 We 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
8 | 7 | adantr 276 | . . . . . . . 8 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
9 | 8 | r19.21bi 2578 | . . . . . . 7 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
10 | 9 | r19.21bi 2578 | . . . . . 6 ⊢ ((((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
11 | 10 | anasss 399 | . . . . 5 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
12 | 11 | r19.21bi 2578 | . . . 4 ⊢ ((((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
13 | 12 | anasss 399 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
14 | 5, 13 | sylan2b 287 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
15 | 4, 14 | ispod 4322 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 Po 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2160 ∀wral 2468 class class class wbr 4018 Po wpo 4312 Fr wfr 4346 We wwe 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-po 4314 df-frfor 4349 df-frind 4350 df-wetr 4352 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |