| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wepo | GIF version | ||
| Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| wepo | ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 4413 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | frirrg 4405 | . . . 4 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | |
| 3 | 1, 2 | syl3an1 1283 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
| 4 | 3 | 3expa 1206 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
| 5 | df-3an 983 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴)) | |
| 6 | df-wetr 4389 | . . . . . . . . . 10 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
| 7 | 6 | simprbi 275 | . . . . . . . . 9 ⊢ (𝑅 We 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 8 | 7 | adantr 276 | . . . . . . . 8 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 9 | 8 | r19.21bi 2595 | . . . . . . 7 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 10 | 9 | r19.21bi 2595 | . . . . . 6 ⊢ ((((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 11 | 10 | anasss 399 | . . . . 5 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 12 | 11 | r19.21bi 2595 | . . . 4 ⊢ ((((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 13 | 12 | anasss 399 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 14 | 5, 13 | sylan2b 287 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 15 | 4, 14 | ispod 4359 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 Po 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 981 ∈ wcel 2177 ∀wral 2485 class class class wbr 4051 Po wpo 4349 Fr wfr 4383 We wwe 4385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-po 4351 df-frfor 4386 df-frind 4387 df-wetr 4389 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |