| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > wepo | GIF version | ||
| Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| wepo | ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 Po 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wefr 4393 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | frirrg 4385 | . . . 4 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | |
| 3 | 1, 2 | syl3an1 1282 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | 
| 4 | 3 | 3expa 1205 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | 
| 5 | df-3an 982 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴)) | |
| 6 | df-wetr 4369 | . . . . . . . . . 10 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
| 7 | 6 | simprbi 275 | . . . . . . . . 9 ⊢ (𝑅 We 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 8 | 7 | adantr 276 | . . . . . . . 8 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 9 | 8 | r19.21bi 2585 | . . . . . . 7 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 10 | 9 | r19.21bi 2585 | . . . . . 6 ⊢ ((((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 11 | 10 | anasss 399 | . . . . 5 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 12 | 11 | r19.21bi 2585 | . . . 4 ⊢ ((((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 13 | 12 | anasss 399 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 14 | 5, 13 | sylan2b 287 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) | 
| 15 | 4, 14 | ispod 4339 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 Po 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2167 ∀wral 2475 class class class wbr 4033 Po wpo 4329 Fr wfr 4363 We wwe 4365 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-po 4331 df-frfor 4366 df-frind 4367 df-wetr 4369 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |