| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wepo | GIF version | ||
| Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| wepo | ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 4403 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | frirrg 4395 | . . . 4 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | |
| 3 | 1, 2 | syl3an1 1282 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
| 4 | 3 | 3expa 1205 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) |
| 5 | df-3an 982 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴)) | |
| 6 | df-wetr 4379 | . . . . . . . . . 10 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | |
| 7 | 6 | simprbi 275 | . . . . . . . . 9 ⊢ (𝑅 We 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 8 | 7 | adantr 276 | . . . . . . . 8 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 9 | 8 | r19.21bi 2593 | . . . . . . 7 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 10 | 9 | r19.21bi 2593 | . . . . . 6 ⊢ ((((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 11 | 10 | anasss 399 | . . . . 5 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 12 | 11 | r19.21bi 2593 | . . . 4 ⊢ ((((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 13 | 12 | anasss 399 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 14 | 5, 13 | sylan2b 287 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| 15 | 4, 14 | ispod 4349 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝑅 Po 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2175 ∀wral 2483 class class class wbr 4043 Po wpo 4339 Fr wfr 4373 We wwe 4375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-po 4341 df-frfor 4376 df-frind 4377 df-wetr 4379 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |