ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wepo GIF version

Theorem wepo 4449
Description: A well-ordering is a partial ordering. (Contributed by Jim Kingdon, 23-Sep-2021.)
Assertion
Ref Expression
wepo ((𝑅 We 𝐴𝐴𝑉) → 𝑅 Po 𝐴)

Proof of Theorem wepo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wefr 4448 . . . 4 (𝑅 We 𝐴𝑅 Fr 𝐴)
2 frirrg 4440 . . . 4 ((𝑅 Fr 𝐴𝐴𝑉𝑥𝐴) → ¬ 𝑥𝑅𝑥)
31, 2syl3an1 1304 . . 3 ((𝑅 We 𝐴𝐴𝑉𝑥𝐴) → ¬ 𝑥𝑅𝑥)
433expa 1227 . 2 (((𝑅 We 𝐴𝐴𝑉) ∧ 𝑥𝐴) → ¬ 𝑥𝑅𝑥)
5 df-3an 1004 . . 3 ((𝑥𝐴𝑦𝐴𝑧𝐴) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴))
6 df-wetr 4424 . . . . . . . . . 10 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
76simprbi 275 . . . . . . . . 9 (𝑅 We 𝐴 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
87adantr 276 . . . . . . . 8 ((𝑅 We 𝐴𝐴𝑉) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
98r19.21bi 2618 . . . . . . 7 (((𝑅 We 𝐴𝐴𝑉) ∧ 𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
109r19.21bi 2618 . . . . . 6 ((((𝑅 We 𝐴𝐴𝑉) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1110anasss 399 . . . . 5 (((𝑅 We 𝐴𝐴𝑉) ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1211r19.21bi 2618 . . . 4 ((((𝑅 We 𝐴𝐴𝑉) ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1312anasss 399 . . 3 (((𝑅 We 𝐴𝐴𝑉) ∧ ((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
145, 13sylan2b 287 . 2 (((𝑅 We 𝐴𝐴𝑉) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
154, 14ispod 4394 1 ((𝑅 We 𝐴𝐴𝑉) → 𝑅 Po 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 1002  wcel 2200  wral 2508   class class class wbr 4082   Po wpo 4384   Fr wfr 4418   We wwe 4420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-po 4386  df-frfor 4421  df-frind 4422  df-wetr 4424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator