ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wetrep GIF version

Theorem wetrep 4395
Description: An epsilon well-ordering is a transitive relation. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
wetrep (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem wetrep
StepHypRef Expression
1 df-3an 982 . . 3 ((𝑥𝐴𝑦𝐴𝑧𝐴) ↔ ((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴))
2 df-wetr 4369 . . . . . . . . 9 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
32simprbi 275 . . . . . . . 8 ( E We 𝐴 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
43r19.21bi 2585 . . . . . . 7 (( E We 𝐴𝑥𝐴) → ∀𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
54r19.21bi 2585 . . . . . 6 ((( E We 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ∀𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
65anasss 399 . . . . 5 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
76r19.21bi 2585 . . . 4 ((( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝐴) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
87anasss 399 . . 3 (( E We 𝐴 ∧ ((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
91, 8sylan2b 287 . 2 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
10 epel 4327 . . 3 (𝑥 E 𝑦𝑥𝑦)
11 epel 4327 . . 3 (𝑦 E 𝑧𝑦𝑧)
1210, 11anbi12i 460 . 2 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
13 epel 4327 . 2 (𝑥 E 𝑧𝑥𝑧)
149, 12, 133imtr3g 204 1 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2167  wral 2475   class class class wbr 4033   E cep 4322   Fr wfr 4363   We wwe 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-eprel 4324  df-wetr 4369
This theorem is referenced by:  wessep  4614
  Copyright terms: Public domain W3C validator