| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seex | GIF version | ||
| Description: The 𝑅-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.) |
| Ref | Expression |
|---|---|
| seex | ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-se 4369 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V) | |
| 2 | breq2 4038 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝑥𝑅𝐵)) | |
| 3 | 2 | rabbidv 2752 | . . . 4 ⊢ (𝑦 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} = {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵}) |
| 4 | 3 | eleq1d 2265 | . . 3 ⊢ (𝑦 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ↔ {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V)) |
| 5 | 4 | rspccva 2867 | . 2 ⊢ ((∀𝑦 ∈ 𝐴 {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝑦} ∈ V ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
| 6 | 1, 5 | sylanb 284 | 1 ⊢ ((𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑥 ∈ 𝐴 ∣ 𝑥𝑅𝐵} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 Vcvv 2763 class class class wbr 4034 Se wse 4365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-se 4369 |
| This theorem is referenced by: sefvex 5582 |
| Copyright terms: Public domain | W3C validator |