ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  weeq2 GIF version

Theorem weeq2 4447
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
weeq2 (𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))

Proof of Theorem weeq2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freq2 4436 . . 3 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
2 raleq 2728 . . . . 5 (𝐴 = 𝐵 → (∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧𝐵 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
32raleqbi1dv 2740 . . . 4 (𝐴 = 𝐵 → (∀𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
43raleqbi1dv 2740 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
51, 4anbi12d 473 . 2 (𝐴 = 𝐵 → ((𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (𝑅 Fr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
6 df-wetr 4424 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
7 df-wetr 4424 . 2 (𝑅 We 𝐵 ↔ (𝑅 Fr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
85, 6, 73bitr4g 223 1 (𝐴 = 𝐵 → (𝑅 We 𝐴𝑅 We 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wral 2508   class class class wbr 4082   Fr wfr 4418   We wwe 4420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-in 3203  df-ss 3210  df-frfor 4421  df-frind 4422  df-wetr 4424
This theorem is referenced by:  reg3exmid  4671
  Copyright terms: Public domain W3C validator