| Step | Hyp | Ref
 | Expression | 
| 1 |   | freq1 4379 | 
. . 3
⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) | 
| 2 |   | breq 4035 | 
. . . . . . . 8
⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) | 
| 3 |   | breq 4035 | 
. . . . . . . 8
⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧)) | 
| 4 | 2, 3 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧))) | 
| 5 |   | breq 4035 | 
. . . . . . 7
⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑧 ↔ 𝑥𝑆𝑧)) | 
| 6 | 4, 5 | imbi12d 234 | 
. . . . . 6
⊢ (𝑅 = 𝑆 → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) | 
| 7 | 6 | ralbidv 2497 | 
. . . . 5
⊢ (𝑅 = 𝑆 → (∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) | 
| 8 | 7 | ralbidv 2497 | 
. . . 4
⊢ (𝑅 = 𝑆 → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) | 
| 9 | 8 | ralbidv 2497 | 
. . 3
⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) | 
| 10 | 1, 9 | anbi12d 473 | 
. 2
⊢ (𝑅 = 𝑆 → ((𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (𝑆 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧)))) | 
| 11 |   | df-wetr 4369 | 
. 2
⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 12 |   | df-wetr 4369 | 
. 2
⊢ (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) | 
| 13 | 10, 11, 12 | 3bitr4g 223 | 
1
⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |