ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  weeq1 GIF version

Theorem weeq1 4334
Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
weeq1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))

Proof of Theorem weeq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freq1 4322 . . 3 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
2 breq 3984 . . . . . . . 8 (𝑅 = 𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
3 breq 3984 . . . . . . . 8 (𝑅 = 𝑆 → (𝑦𝑅𝑧𝑦𝑆𝑧))
42, 3anbi12d 465 . . . . . . 7 (𝑅 = 𝑆 → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥𝑆𝑦𝑦𝑆𝑧)))
5 breq 3984 . . . . . . 7 (𝑅 = 𝑆 → (𝑥𝑅𝑧𝑥𝑆𝑧))
64, 5imbi12d 233 . . . . . 6 (𝑅 = 𝑆 → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧)))
76ralbidv 2466 . . . . 5 (𝑅 = 𝑆 → (∀𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧𝐴 ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧)))
87ralbidv 2466 . . . 4 (𝑅 = 𝑆 → (∀𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦𝐴𝑧𝐴 ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧)))
98ralbidv 2466 . . 3 (𝑅 = 𝑆 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧)))
101, 9anbi12d 465 . 2 (𝑅 = 𝑆 → ((𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (𝑆 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧))))
11 df-wetr 4312 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
12 df-wetr 4312 . 2 (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑆𝑦𝑦𝑆𝑧) → 𝑥𝑆𝑧)))
1310, 11, 123bitr4g 222 1 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wral 2444   class class class wbr 3982   Fr wfr 4306   We wwe 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-ral 2449  df-br 3983  df-frfor 4309  df-frind 4310  df-wetr 4312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator