Step | Hyp | Ref
| Expression |
1 | | freq1 4322 |
. . 3
⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
2 | | breq 3984 |
. . . . . . . 8
⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑦 ↔ 𝑥𝑆𝑦)) |
3 | | breq 3984 |
. . . . . . . 8
⊢ (𝑅 = 𝑆 → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧)) |
4 | 2, 3 | anbi12d 465 |
. . . . . . 7
⊢ (𝑅 = 𝑆 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧))) |
5 | | breq 3984 |
. . . . . . 7
⊢ (𝑅 = 𝑆 → (𝑥𝑅𝑧 ↔ 𝑥𝑆𝑧)) |
6 | 4, 5 | imbi12d 233 |
. . . . . 6
⊢ (𝑅 = 𝑆 → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) |
7 | 6 | ralbidv 2466 |
. . . . 5
⊢ (𝑅 = 𝑆 → (∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) |
8 | 7 | ralbidv 2466 |
. . . 4
⊢ (𝑅 = 𝑆 → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) |
9 | 8 | ralbidv 2466 |
. . 3
⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) |
10 | 1, 9 | anbi12d 465 |
. 2
⊢ (𝑅 = 𝑆 → ((𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (𝑆 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧)))) |
11 | | df-wetr 4312 |
. 2
⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
12 | | df-wetr 4312 |
. 2
⊢ (𝑆 We 𝐴 ↔ (𝑆 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥𝑆𝑦 ∧ 𝑦𝑆𝑧) → 𝑥𝑆𝑧))) |
13 | 10, 11, 12 | 3bitr4g 222 |
1
⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |