Step | Hyp | Ref
| Expression |
1 | | noel 3418 |
. . . 4
⊢ ¬
{𝑧 ∈ {∅} ∣
𝜑} ∈
∅ |
2 | | ordtriexmidlem 4503 |
. . . . . 6
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ On |
3 | | eleq1 2233 |
. . . . . . . 8
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅)) |
4 | | eqeq1 2177 |
. . . . . . . 8
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 = ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅)) |
5 | | eleq2 2234 |
. . . . . . . 8
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) |
6 | 3, 4, 5 | 3orbi123d 1306 |
. . . . . . 7
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) |
7 | | 0elon 4377 |
. . . . . . . 8
⊢ ∅
∈ On |
8 | | 0ex 4116 |
. . . . . . . . 9
⊢ ∅
∈ V |
9 | | eleq1 2233 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑦 ∈ On ↔ ∅ ∈
On)) |
10 | 9 | anbi2d 461 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ((𝑥 ∈ On ∧ 𝑦 ∈ On) ↔ (𝑥 ∈ On ∧ ∅ ∈
On))) |
11 | | eleq2 2234 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ∅)) |
12 | | eqeq2 2180 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑥 = 𝑦 ↔ 𝑥 = ∅)) |
13 | | eleq1 2233 |
. . . . . . . . . . 11
⊢ (𝑦 = ∅ → (𝑦 ∈ 𝑥 ↔ ∅ ∈ 𝑥)) |
14 | 11, 12, 13 | 3orbi123d 1306 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥))) |
15 | 10, 14 | imbi12d 233 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) ↔ ((𝑥 ∈ On ∧ ∅ ∈ On) →
(𝑥 ∈ ∅ ∨
𝑥 = ∅ ∨ ∅
∈ 𝑥)))) |
16 | | ordtriexmid.1 |
. . . . . . . . . 10
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) |
17 | 16 | rspec2 2559 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)) |
18 | 8, 15, 17 | vtocl 2784 |
. . . . . . . 8
⊢ ((𝑥 ∈ On ∧ ∅ ∈
On) → (𝑥 ∈
∅ ∨ 𝑥 = ∅
∨ ∅ ∈ 𝑥)) |
19 | 7, 18 | mpan2 423 |
. . . . . . 7
⊢ (𝑥 ∈ On → (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈
𝑥)) |
20 | 6, 19 | vtoclga 2796 |
. . . . . 6
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑})) |
21 | 2, 20 | ax-mp 5 |
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑}) |
22 | | 3orass 976 |
. . . . 5
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑}))) |
23 | 21, 22 | mpbi 144 |
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑})) |
24 | 1, 23 | mtpor 1420 |
. . 3
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑}) |
25 | | ordtriexmidlem2 4504 |
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) |
26 | 8 | snid 3614 |
. . . . . 6
⊢ ∅
∈ {∅} |
27 | | biidd 171 |
. . . . . . 7
⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) |
28 | 27 | elrab3 2887 |
. . . . . 6
⊢ (∅
∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) |
29 | 26, 28 | ax-mp 5 |
. . . . 5
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} ↔ 𝜑) |
30 | 29 | biimpi 119 |
. . . 4
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} → 𝜑) |
31 | 25, 30 | orim12i 754 |
. . 3
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑}) → (¬ 𝜑 ∨ 𝜑)) |
32 | 24, 31 | ax-mp 5 |
. 2
⊢ (¬
𝜑 ∨ 𝜑) |
33 | | orcom 723 |
. 2
⊢ ((𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑 ∨ 𝜑)) |
34 | 32, 33 | mpbir 145 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |