ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmid GIF version

Theorem ordtriexmid 4573
Description: Ordinal trichotomy implies the law of the excluded middle (that is, decidability of an arbitrary proposition).

This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

Also see exmidontri 7358 which is much the same theorem but biconditionalized and using the EXMID notation. (Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.)

Hypothesis
Ref Expression
ordtriexmid.1 𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)
Assertion
Ref Expression
ordtriexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem ordtriexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 noel 3465 . . . 4 ¬ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅
2 ordtriexmidlem 4571 . . . . . 6 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
3 eleq1 2269 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅))
4 eqeq1 2213 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 = ∅ ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅))
5 eleq2 2270 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ 𝑥 ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
63, 4, 53orbi123d 1324 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
7 0elon 4443 . . . . . . . 8 ∅ ∈ On
8 0ex 4175 . . . . . . . . 9 ∅ ∈ V
9 eleq1 2269 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦 ∈ On ↔ ∅ ∈ On))
109anbi2d 464 . . . . . . . . . 10 (𝑦 = ∅ → ((𝑥 ∈ On ∧ 𝑦 ∈ On) ↔ (𝑥 ∈ On ∧ ∅ ∈ On)))
11 eleq2 2270 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑥𝑦𝑥 ∈ ∅))
12 eqeq2 2216 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑥 = 𝑦𝑥 = ∅))
13 eleq1 2269 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦𝑥 ↔ ∅ ∈ 𝑥))
1411, 12, 133orbi123d 1324 . . . . . . . . . 10 (𝑦 = ∅ → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥)))
1510, 14imbi12d 234 . . . . . . . . 9 (𝑦 = ∅ → (((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥)) ↔ ((𝑥 ∈ On ∧ ∅ ∈ On) → (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥))))
16 ordtriexmid.1 . . . . . . . . . 10 𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥)
1716rspec2 2596 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
188, 15, 17vtocl 2828 . . . . . . . 8 ((𝑥 ∈ On ∧ ∅ ∈ On) → (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥))
197, 18mpan2 425 . . . . . . 7 (𝑥 ∈ On → (𝑥 ∈ ∅ ∨ 𝑥 = ∅ ∨ ∅ ∈ 𝑥))
206, 19vtoclga 2840 . . . . . 6 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
212, 20ax-mp 5 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})
22 3orass 984 . . . . 5 (({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
2321, 22mpbi 145 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
241, 23mtpor 1445 . . 3 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})
25 ordtriexmidlem2 4572 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
268snid 3665 . . . . . 6 ∅ ∈ {∅}
27 biidd 172 . . . . . . 7 (𝑧 = ∅ → (𝜑𝜑))
2827elrab3 2931 . . . . . 6 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2926, 28ax-mp 5 . . . . 5 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
3029biimpi 120 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
3125, 30orim12i 761 . . 3 (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑𝜑))
3224, 31ax-mp 5 . 2 𝜑𝜑)
33 orcom 730 . 2 ((𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑𝜑))
3432, 33mpbir 146 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3o 980   = wceq 1373  wcel 2177  wral 2485  {crab 2489  c0 3461  {csn 3634  Oncon0 4414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-uni 3853  df-tr 4147  df-iord 4417  df-on 4419  df-suc 4422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator