ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmidlemwe GIF version

Theorem reg3exmidlemwe 4575
Description: Lemma for reg3exmid 4576. Our counterexample 𝐴 satisfies We. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmidlemwe.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
Assertion
Ref Expression
reg3exmidlemwe E We 𝐴
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem reg3exmidlemwe
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfregfr 4570 . 2 E Fr 𝐴
2 epel 4289 . . . . . 6 (𝑎 E 𝑏𝑎𝑏)
3 epel 4289 . . . . . 6 (𝑏 E 𝑐𝑏𝑐)
42, 3anbi12i 460 . . . . 5 ((𝑎 E 𝑏𝑏 E 𝑐) ↔ (𝑎𝑏𝑏𝑐))
5 simpr 110 . . . . . 6 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → (𝑎𝑏𝑏𝑐))
6 elirr 4537 . . . . . . . 8 ¬ {∅} ∈ {∅}
7 simprr 531 . . . . . . . . . 10 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑏𝑐)
8 noel 3426 . . . . . . . . . . . . 13 ¬ 𝑎 ∈ ∅
9 eleq2 2241 . . . . . . . . . . . . 13 (𝑏 = ∅ → (𝑎𝑏𝑎 ∈ ∅))
108, 9mtbiri 675 . . . . . . . . . . . 12 (𝑏 = ∅ → ¬ 𝑎𝑏)
11 simprl 529 . . . . . . . . . . . 12 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑎𝑏)
1210, 11nsyl3 626 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → ¬ 𝑏 = ∅)
13 elrabi 2890 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑏 ∈ {∅, {∅}})
14 reg3exmidlemwe.a . . . . . . . . . . . . . . . 16 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
1513, 14eleq2s 2272 . . . . . . . . . . . . . . 15 (𝑏𝐴𝑏 ∈ {∅, {∅}})
16 elpri 3614 . . . . . . . . . . . . . . 15 (𝑏 ∈ {∅, {∅}} → (𝑏 = ∅ ∨ 𝑏 = {∅}))
1715, 16syl 14 . . . . . . . . . . . . . 14 (𝑏𝐴 → (𝑏 = ∅ ∨ 𝑏 = {∅}))
1817orcomd 729 . . . . . . . . . . . . 13 (𝑏𝐴 → (𝑏 = {∅} ∨ 𝑏 = ∅))
19183ad2ant2 1019 . . . . . . . . . . . 12 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (𝑏 = {∅} ∨ 𝑏 = ∅))
2019adantr 276 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → (𝑏 = {∅} ∨ 𝑏 = ∅))
2112, 20ecased 1349 . . . . . . . . . 10 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑏 = {∅})
22 noel 3426 . . . . . . . . . . . . 13 ¬ 𝑏 ∈ ∅
23 eleq2 2241 . . . . . . . . . . . . 13 (𝑐 = ∅ → (𝑏𝑐𝑏 ∈ ∅))
2422, 23mtbiri 675 . . . . . . . . . . . 12 (𝑐 = ∅ → ¬ 𝑏𝑐)
2524, 7nsyl3 626 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → ¬ 𝑐 = ∅)
26 elrabi 2890 . . . . . . . . . . . . . . . 16 (𝑐 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑐 ∈ {∅, {∅}})
2726, 14eleq2s 2272 . . . . . . . . . . . . . . 15 (𝑐𝐴𝑐 ∈ {∅, {∅}})
28 vex 2740 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
2928elpr 3612 . . . . . . . . . . . . . . 15 (𝑐 ∈ {∅, {∅}} ↔ (𝑐 = ∅ ∨ 𝑐 = {∅}))
3027, 29sylib 122 . . . . . . . . . . . . . 14 (𝑐𝐴 → (𝑐 = ∅ ∨ 𝑐 = {∅}))
3130orcomd 729 . . . . . . . . . . . . 13 (𝑐𝐴 → (𝑐 = {∅} ∨ 𝑐 = ∅))
32313ad2ant3 1020 . . . . . . . . . . . 12 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (𝑐 = {∅} ∨ 𝑐 = ∅))
3332adantr 276 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → (𝑐 = {∅} ∨ 𝑐 = ∅))
3425, 33ecased 1349 . . . . . . . . . 10 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑐 = {∅})
357, 21, 343eltr3d 2260 . . . . . . . . 9 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → {∅} ∈ {∅})
3635ex 115 . . . . . . . 8 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝑎𝑏𝑏𝑐) → {∅} ∈ {∅}))
376, 36mtoi 664 . . . . . . 7 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ¬ (𝑎𝑏𝑏𝑐))
3837adantr 276 . . . . . 6 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → ¬ (𝑎𝑏𝑏𝑐))
395, 38pm2.21dd 620 . . . . 5 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑎 E 𝑐)
404, 39sylan2b 287 . . . 4 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎 E 𝑏𝑏 E 𝑐)) → 𝑎 E 𝑐)
4140ex 115 . . 3 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝑎 E 𝑏𝑏 E 𝑐) → 𝑎 E 𝑐))
4241rgen3 2564 . 2 𝑎𝐴𝑏𝐴𝑐𝐴 ((𝑎 E 𝑏𝑏 E 𝑐) → 𝑎 E 𝑐)
43 df-wetr 4331 . 2 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 ((𝑎 E 𝑏𝑏 E 𝑐) → 𝑎 E 𝑐)))
441, 42, 43mpbir2an 942 1 E We 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  w3a 978   = wceq 1353  wcel 2148  wral 2455  {crab 2459  c0 3422  {csn 3591  {cpr 3592   class class class wbr 4000   E cep 4284   Fr wfr 4325   We wwe 4327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-eprel 4286  df-frfor 4328  df-frind 4329  df-wetr 4331
This theorem is referenced by:  reg3exmid  4576
  Copyright terms: Public domain W3C validator