ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmidlemwe GIF version

Theorem reg3exmidlemwe 4635
Description: Lemma for reg3exmid 4636. Our counterexample 𝐴 satisfies We. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmidlemwe.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
Assertion
Ref Expression
reg3exmidlemwe E We 𝐴
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem reg3exmidlemwe
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfregfr 4630 . 2 E Fr 𝐴
2 epel 4347 . . . . . 6 (𝑎 E 𝑏𝑎𝑏)
3 epel 4347 . . . . . 6 (𝑏 E 𝑐𝑏𝑐)
42, 3anbi12i 460 . . . . 5 ((𝑎 E 𝑏𝑏 E 𝑐) ↔ (𝑎𝑏𝑏𝑐))
5 simpr 110 . . . . . 6 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → (𝑎𝑏𝑏𝑐))
6 elirr 4597 . . . . . . . 8 ¬ {∅} ∈ {∅}
7 simprr 531 . . . . . . . . . 10 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑏𝑐)
8 noel 3468 . . . . . . . . . . . . 13 ¬ 𝑎 ∈ ∅
9 eleq2 2270 . . . . . . . . . . . . 13 (𝑏 = ∅ → (𝑎𝑏𝑎 ∈ ∅))
108, 9mtbiri 677 . . . . . . . . . . . 12 (𝑏 = ∅ → ¬ 𝑎𝑏)
11 simprl 529 . . . . . . . . . . . 12 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑎𝑏)
1210, 11nsyl3 627 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → ¬ 𝑏 = ∅)
13 elrabi 2930 . . . . . . . . . . . . . . . 16 (𝑏 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑏 ∈ {∅, {∅}})
14 reg3exmidlemwe.a . . . . . . . . . . . . . . . 16 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))}
1513, 14eleq2s 2301 . . . . . . . . . . . . . . 15 (𝑏𝐴𝑏 ∈ {∅, {∅}})
16 elpri 3661 . . . . . . . . . . . . . . 15 (𝑏 ∈ {∅, {∅}} → (𝑏 = ∅ ∨ 𝑏 = {∅}))
1715, 16syl 14 . . . . . . . . . . . . . 14 (𝑏𝐴 → (𝑏 = ∅ ∨ 𝑏 = {∅}))
1817orcomd 731 . . . . . . . . . . . . 13 (𝑏𝐴 → (𝑏 = {∅} ∨ 𝑏 = ∅))
19183ad2ant2 1022 . . . . . . . . . . . 12 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (𝑏 = {∅} ∨ 𝑏 = ∅))
2019adantr 276 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → (𝑏 = {∅} ∨ 𝑏 = ∅))
2112, 20ecased 1362 . . . . . . . . . 10 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑏 = {∅})
22 noel 3468 . . . . . . . . . . . . 13 ¬ 𝑏 ∈ ∅
23 eleq2 2270 . . . . . . . . . . . . 13 (𝑐 = ∅ → (𝑏𝑐𝑏 ∈ ∅))
2422, 23mtbiri 677 . . . . . . . . . . . 12 (𝑐 = ∅ → ¬ 𝑏𝑐)
2524, 7nsyl3 627 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → ¬ 𝑐 = ∅)
26 elrabi 2930 . . . . . . . . . . . . . . . 16 (𝑐 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑐 ∈ {∅, {∅}})
2726, 14eleq2s 2301 . . . . . . . . . . . . . . 15 (𝑐𝐴𝑐 ∈ {∅, {∅}})
28 vex 2776 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
2928elpr 3659 . . . . . . . . . . . . . . 15 (𝑐 ∈ {∅, {∅}} ↔ (𝑐 = ∅ ∨ 𝑐 = {∅}))
3027, 29sylib 122 . . . . . . . . . . . . . 14 (𝑐𝐴 → (𝑐 = ∅ ∨ 𝑐 = {∅}))
3130orcomd 731 . . . . . . . . . . . . 13 (𝑐𝐴 → (𝑐 = {∅} ∨ 𝑐 = ∅))
32313ad2ant3 1023 . . . . . . . . . . . 12 ((𝑎𝐴𝑏𝐴𝑐𝐴) → (𝑐 = {∅} ∨ 𝑐 = ∅))
3332adantr 276 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → (𝑐 = {∅} ∨ 𝑐 = ∅))
3425, 33ecased 1362 . . . . . . . . . 10 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑐 = {∅})
357, 21, 343eltr3d 2289 . . . . . . . . 9 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → {∅} ∈ {∅})
3635ex 115 . . . . . . . 8 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝑎𝑏𝑏𝑐) → {∅} ∈ {∅}))
376, 36mtoi 666 . . . . . . 7 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ¬ (𝑎𝑏𝑏𝑐))
3837adantr 276 . . . . . 6 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → ¬ (𝑎𝑏𝑏𝑐))
395, 38pm2.21dd 621 . . . . 5 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎𝑏𝑏𝑐)) → 𝑎 E 𝑐)
404, 39sylan2b 287 . . . 4 (((𝑎𝐴𝑏𝐴𝑐𝐴) ∧ (𝑎 E 𝑏𝑏 E 𝑐)) → 𝑎 E 𝑐)
4140ex 115 . . 3 ((𝑎𝐴𝑏𝐴𝑐𝐴) → ((𝑎 E 𝑏𝑏 E 𝑐) → 𝑎 E 𝑐))
4241rgen3 2594 . 2 𝑎𝐴𝑏𝐴𝑐𝐴 ((𝑎 E 𝑏𝑏 E 𝑐) → 𝑎 E 𝑐)
43 df-wetr 4389 . 2 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 ((𝑎 E 𝑏𝑏 E 𝑐) → 𝑎 E 𝑐)))
441, 42, 43mpbir2an 945 1 E We 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  w3a 981   = wceq 1373  wcel 2177  wral 2485  {crab 2489  c0 3464  {csn 3638  {cpr 3639   class class class wbr 4051   E cep 4342   Fr wfr 4383   We wwe 4385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-eprel 4344  df-frfor 4386  df-frind 4387  df-wetr 4389
This theorem is referenced by:  reg3exmid  4636
  Copyright terms: Public domain W3C validator