| Step | Hyp | Ref
| Expression |
| 1 | | zfregfr 4611 |
. 2
⊢ E Fr
𝐴 |
| 2 | | epel 4328 |
. . . . . 6
⊢ (𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏) |
| 3 | | epel 4328 |
. . . . . 6
⊢ (𝑏 E 𝑐 ↔ 𝑏 ∈ 𝑐) |
| 4 | 2, 3 | anbi12i 460 |
. . . . 5
⊢ ((𝑎 E 𝑏 ∧ 𝑏 E 𝑐) ↔ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) |
| 5 | | simpr 110 |
. . . . . 6
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) |
| 6 | | elirr 4578 |
. . . . . . . 8
⊢ ¬
{∅} ∈ {∅} |
| 7 | | simprr 531 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑏 ∈ 𝑐) |
| 8 | | noel 3455 |
. . . . . . . . . . . . 13
⊢ ¬
𝑎 ∈
∅ |
| 9 | | eleq2 2260 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ∅ → (𝑎 ∈ 𝑏 ↔ 𝑎 ∈ ∅)) |
| 10 | 8, 9 | mtbiri 676 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ → ¬ 𝑎 ∈ 𝑏) |
| 11 | | simprl 529 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑎 ∈ 𝑏) |
| 12 | 10, 11 | nsyl3 627 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → ¬ 𝑏 = ∅) |
| 13 | | elrabi 2917 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑏 ∈ {∅,
{∅}}) |
| 14 | | reg3exmidlemwe.a |
. . . . . . . . . . . . . . . 16
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} |
| 15 | 13, 14 | eleq2s 2291 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ 𝐴 → 𝑏 ∈ {∅,
{∅}}) |
| 16 | | elpri 3646 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ {∅, {∅}}
→ (𝑏 = ∅ ∨
𝑏 =
{∅})) |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝐴 → (𝑏 = ∅ ∨ 𝑏 = {∅})) |
| 18 | 17 | orcomd 730 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ 𝐴 → (𝑏 = {∅} ∨ 𝑏 = ∅)) |
| 19 | 18 | 3ad2ant2 1021 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → (𝑏 = {∅} ∨ 𝑏 = ∅)) |
| 20 | 19 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → (𝑏 = {∅} ∨ 𝑏 = ∅)) |
| 21 | 12, 20 | ecased 1360 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑏 = {∅}) |
| 22 | | noel 3455 |
. . . . . . . . . . . . 13
⊢ ¬
𝑏 ∈
∅ |
| 23 | | eleq2 2260 |
. . . . . . . . . . . . 13
⊢ (𝑐 = ∅ → (𝑏 ∈ 𝑐 ↔ 𝑏 ∈ ∅)) |
| 24 | 22, 23 | mtbiri 676 |
. . . . . . . . . . . 12
⊢ (𝑐 = ∅ → ¬ 𝑏 ∈ 𝑐) |
| 25 | 24, 7 | nsyl3 627 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → ¬ 𝑐 = ∅) |
| 26 | | elrabi 2917 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑐 ∈ {∅,
{∅}}) |
| 27 | 26, 14 | eleq2s 2291 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ {∅,
{∅}}) |
| 28 | | vex 2766 |
. . . . . . . . . . . . . . . 16
⊢ 𝑐 ∈ V |
| 29 | 28 | elpr 3644 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ {∅, {∅}}
↔ (𝑐 = ∅ ∨
𝑐 =
{∅})) |
| 30 | 27, 29 | sylib 122 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝐴 → (𝑐 = ∅ ∨ 𝑐 = {∅})) |
| 31 | 30 | orcomd 730 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ 𝐴 → (𝑐 = {∅} ∨ 𝑐 = ∅)) |
| 32 | 31 | 3ad2ant3 1022 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → (𝑐 = {∅} ∨ 𝑐 = ∅)) |
| 33 | 32 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → (𝑐 = {∅} ∨ 𝑐 = ∅)) |
| 34 | 25, 33 | ecased 1360 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑐 = {∅}) |
| 35 | 7, 21, 34 | 3eltr3d 2279 |
. . . . . . . . 9
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → {∅} ∈
{∅}) |
| 36 | 35 | ex 115 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → ((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐) → {∅} ∈
{∅})) |
| 37 | 6, 36 | mtoi 665 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → ¬ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) |
| 38 | 37 | adantr 276 |
. . . . . 6
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → ¬ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) |
| 39 | 5, 38 | pm2.21dd 621 |
. . . . 5
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑎 E 𝑐) |
| 40 | 4, 39 | sylan2b 287 |
. . . 4
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 E 𝑏 ∧ 𝑏 E 𝑐)) → 𝑎 E 𝑐) |
| 41 | 40 | ex 115 |
. . 3
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → ((𝑎 E 𝑏 ∧ 𝑏 E 𝑐) → 𝑎 E 𝑐)) |
| 42 | 41 | rgen3 2584 |
. 2
⊢
∀𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 ((𝑎 E 𝑏 ∧ 𝑏 E 𝑐) → 𝑎 E 𝑐) |
| 43 | | df-wetr 4370 |
. 2
⊢ ( E We
𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 ((𝑎 E 𝑏 ∧ 𝑏 E 𝑐) → 𝑎 E 𝑐))) |
| 44 | 1, 42, 43 | mpbir2an 944 |
1
⊢ E We
𝐴 |