Step | Hyp | Ref
| Expression |
1 | | zfregfr 4551 |
. 2
⊢ E Fr
𝐴 |
2 | | epel 4270 |
. . . . . 6
⊢ (𝑎 E 𝑏 ↔ 𝑎 ∈ 𝑏) |
3 | | epel 4270 |
. . . . . 6
⊢ (𝑏 E 𝑐 ↔ 𝑏 ∈ 𝑐) |
4 | 2, 3 | anbi12i 456 |
. . . . 5
⊢ ((𝑎 E 𝑏 ∧ 𝑏 E 𝑐) ↔ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) |
5 | | simpr 109 |
. . . . . 6
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) |
6 | | elirr 4518 |
. . . . . . . 8
⊢ ¬
{∅} ∈ {∅} |
7 | | simprr 522 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑏 ∈ 𝑐) |
8 | | noel 3413 |
. . . . . . . . . . . . 13
⊢ ¬
𝑎 ∈
∅ |
9 | | eleq2 2230 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ∅ → (𝑎 ∈ 𝑏 ↔ 𝑎 ∈ ∅)) |
10 | 8, 9 | mtbiri 665 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ → ¬ 𝑎 ∈ 𝑏) |
11 | | simprl 521 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑎 ∈ 𝑏) |
12 | 10, 11 | nsyl3 616 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → ¬ 𝑏 = ∅) |
13 | | elrabi 2879 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑏 ∈ {∅,
{∅}}) |
14 | | reg3exmidlemwe.a |
. . . . . . . . . . . . . . . 16
⊢ 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} |
15 | 13, 14 | eleq2s 2261 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ 𝐴 → 𝑏 ∈ {∅,
{∅}}) |
16 | | elpri 3599 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ {∅, {∅}}
→ (𝑏 = ∅ ∨
𝑏 =
{∅})) |
17 | 15, 16 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝐴 → (𝑏 = ∅ ∨ 𝑏 = {∅})) |
18 | 17 | orcomd 719 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ 𝐴 → (𝑏 = {∅} ∨ 𝑏 = ∅)) |
19 | 18 | 3ad2ant2 1009 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → (𝑏 = {∅} ∨ 𝑏 = ∅)) |
20 | 19 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → (𝑏 = {∅} ∨ 𝑏 = ∅)) |
21 | 12, 20 | ecased 1339 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑏 = {∅}) |
22 | | noel 3413 |
. . . . . . . . . . . . 13
⊢ ¬
𝑏 ∈
∅ |
23 | | eleq2 2230 |
. . . . . . . . . . . . 13
⊢ (𝑐 = ∅ → (𝑏 ∈ 𝑐 ↔ 𝑏 ∈ ∅)) |
24 | 22, 23 | mtbiri 665 |
. . . . . . . . . . . 12
⊢ (𝑐 = ∅ → ¬ 𝑏 ∈ 𝑐) |
25 | 24, 7 | nsyl3 616 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → ¬ 𝑐 = ∅) |
26 | | elrabi 2879 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ (𝑥 = ∅ ∧ 𝜑))} → 𝑐 ∈ {∅,
{∅}}) |
27 | 26, 14 | eleq2s 2261 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ {∅,
{∅}}) |
28 | | vex 2729 |
. . . . . . . . . . . . . . . 16
⊢ 𝑐 ∈ V |
29 | 28 | elpr 3597 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ {∅, {∅}}
↔ (𝑐 = ∅ ∨
𝑐 =
{∅})) |
30 | 27, 29 | sylib 121 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝐴 → (𝑐 = ∅ ∨ 𝑐 = {∅})) |
31 | 30 | orcomd 719 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ 𝐴 → (𝑐 = {∅} ∨ 𝑐 = ∅)) |
32 | 31 | 3ad2ant3 1010 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → (𝑐 = {∅} ∨ 𝑐 = ∅)) |
33 | 32 | adantr 274 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → (𝑐 = {∅} ∨ 𝑐 = ∅)) |
34 | 25, 33 | ecased 1339 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑐 = {∅}) |
35 | 7, 21, 34 | 3eltr3d 2249 |
. . . . . . . . 9
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → {∅} ∈
{∅}) |
36 | 35 | ex 114 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → ((𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐) → {∅} ∈
{∅})) |
37 | 6, 36 | mtoi 654 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → ¬ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) |
38 | 37 | adantr 274 |
. . . . . 6
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → ¬ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) |
39 | 5, 38 | pm2.21dd 610 |
. . . . 5
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 ∈ 𝑏 ∧ 𝑏 ∈ 𝑐)) → 𝑎 E 𝑐) |
40 | 4, 39 | sylan2b 285 |
. . . 4
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑎 E 𝑏 ∧ 𝑏 E 𝑐)) → 𝑎 E 𝑐) |
41 | 40 | ex 114 |
. . 3
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) → ((𝑎 E 𝑏 ∧ 𝑏 E 𝑐) → 𝑎 E 𝑐)) |
42 | 41 | rgen3 2553 |
. 2
⊢
∀𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 ((𝑎 E 𝑏 ∧ 𝑏 E 𝑐) → 𝑎 E 𝑐) |
43 | | df-wetr 4312 |
. 2
⊢ ( E We
𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 ((𝑎 E 𝑏 ∧ 𝑏 E 𝑐) → 𝑎 E 𝑐))) |
44 | 1, 42, 43 | mpbir2an 932 |
1
⊢ E We
𝐴 |