![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfwe | GIF version |
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfwe.r | ⊢ Ⅎ𝑥𝑅 |
nfwe.a | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfwe | ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wetr 4185 | . 2 ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐))) | |
2 | nfwe.r | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
3 | nfwe.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffr 4200 | . . 3 ⊢ Ⅎ𝑥 𝑅 Fr 𝐴 |
5 | nfcv 2235 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑎 | |
6 | nfcv 2235 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑏 | |
7 | 5, 2, 6 | nfbr 3911 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
8 | nfcv 2235 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑐 | |
9 | 6, 2, 8 | nfbr 3911 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑏𝑅𝑐 |
10 | 7, 9 | nfan 1509 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) |
11 | 5, 2, 8 | nfbr 3911 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑐 |
12 | 10, 11 | nfim 1516 | . . . . . 6 ⊢ Ⅎ𝑥((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) |
13 | 3, 12 | nfralxy 2425 | . . . . 5 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝐴 ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) |
14 | 3, 13 | nfralxy 2425 | . . . 4 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) |
15 | 3, 14 | nfralxy 2425 | . . 3 ⊢ Ⅎ𝑥∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) |
16 | 4, 15 | nfan 1509 | . 2 ⊢ Ⅎ𝑥(𝑅 Fr 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
17 | 1, 16 | nfxfr 1415 | 1 ⊢ Ⅎ𝑥 𝑅 We 𝐴 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 Ⅎwnf 1401 Ⅎwnfc 2222 ∀wral 2370 class class class wbr 3867 Fr wfr 4179 We wwe 4181 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-frfor 4182 df-frind 4183 df-wetr 4185 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |