ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfwe GIF version

Theorem nfwe 4445
Description: Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfwe.r 𝑥𝑅
nfwe.a 𝑥𝐴
Assertion
Ref Expression
nfwe 𝑥 𝑅 We 𝐴

Proof of Theorem nfwe
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wetr 4424 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)))
2 nfwe.r . . . 4 𝑥𝑅
3 nfwe.a . . . 4 𝑥𝐴
42, 3nffr 4439 . . 3 𝑥 𝑅 Fr 𝐴
5 nfcv 2372 . . . . . . . . 9 𝑥𝑎
6 nfcv 2372 . . . . . . . . 9 𝑥𝑏
75, 2, 6nfbr 4129 . . . . . . . 8 𝑥 𝑎𝑅𝑏
8 nfcv 2372 . . . . . . . . 9 𝑥𝑐
96, 2, 8nfbr 4129 . . . . . . . 8 𝑥 𝑏𝑅𝑐
107, 9nfan 1611 . . . . . . 7 𝑥(𝑎𝑅𝑏𝑏𝑅𝑐)
115, 2, 8nfbr 4129 . . . . . . 7 𝑥 𝑎𝑅𝑐
1210, 11nfim 1618 . . . . . 6 𝑥((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)
133, 12nfralxy 2568 . . . . 5 𝑥𝑐𝐴 ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)
143, 13nfralxy 2568 . . . 4 𝑥𝑏𝐴𝑐𝐴 ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)
153, 14nfralxy 2568 . . 3 𝑥𝑎𝐴𝑏𝐴𝑐𝐴 ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐)
164, 15nfan 1611 . 2 𝑥(𝑅 Fr 𝐴 ∧ ∀𝑎𝐴𝑏𝐴𝑐𝐴 ((𝑎𝑅𝑏𝑏𝑅𝑐) → 𝑎𝑅𝑐))
171, 16nfxfr 1520 1 𝑥 𝑅 We 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wnf 1506  wnfc 2359  wral 2508   class class class wbr 4082   Fr wfr 4418   We wwe 4420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-frfor 4421  df-frind 4422  df-wetr 4424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator