ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wessep GIF version

Theorem wessep 4614
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
wessep (( E We 𝐴𝐵𝐴) → E We 𝐵)

Proof of Theorem wessep
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3177 . . . . . . 7 (𝐵𝐴 → (𝑥𝐵𝑥𝐴))
2 ssel 3177 . . . . . . 7 (𝐵𝐴 → (𝑦𝐵𝑦𝐴))
3 ssel 3177 . . . . . . 7 (𝐵𝐴 → (𝑧𝐵𝑧𝐴))
41, 2, 33anim123d 1330 . . . . . 6 (𝐵𝐴 → ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝐴𝑦𝐴𝑧𝐴)))
54adantl 277 . . . . 5 (( E We 𝐴𝐵𝐴) → ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝐴𝑦𝐴𝑧𝐴)))
65imdistani 445 . . . 4 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)))
7 wetrep 4395 . . . . . 6 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
87adantlr 477 . . . . 5 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
9 epel 4327 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
10 epel 4327 . . . . . 6 (𝑦 E 𝑧𝑦𝑧)
119, 10anbi12i 460 . . . . 5 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
12 epel 4327 . . . . 5 (𝑥 E 𝑧𝑥𝑧)
138, 11, 123imtr4g 205 . . . 4 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
146, 13syl 14 . . 3 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1514ralrimivvva 2580 . 2 (( E We 𝐴𝐵𝐴) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
16 zfregfr 4610 . . 3 E Fr 𝐵
17 df-wetr 4369 . . 3 ( E We 𝐵 ↔ ( E Fr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1816, 17mpbiran 942 . 2 ( E We 𝐵 ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1915, 18sylibr 134 1 (( E We 𝐴𝐵𝐴) → E We 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2167  wral 2475  wss 3157   class class class wbr 4033   E cep 4322   Fr wfr 4363   We wwe 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-eprel 4324  df-frfor 4366  df-frind 4367  df-wetr 4369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator