ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wessep GIF version

Theorem wessep 4555
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
wessep (( E We 𝐴𝐵𝐴) → E We 𝐵)

Proof of Theorem wessep
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3136 . . . . . . 7 (𝐵𝐴 → (𝑥𝐵𝑥𝐴))
2 ssel 3136 . . . . . . 7 (𝐵𝐴 → (𝑦𝐵𝑦𝐴))
3 ssel 3136 . . . . . . 7 (𝐵𝐴 → (𝑧𝐵𝑧𝐴))
41, 2, 33anim123d 1309 . . . . . 6 (𝐵𝐴 → ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝐴𝑦𝐴𝑧𝐴)))
54adantl 275 . . . . 5 (( E We 𝐴𝐵𝐴) → ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝐴𝑦𝐴𝑧𝐴)))
65imdistani 442 . . . 4 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)))
7 wetrep 4338 . . . . . 6 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
87adantlr 469 . . . . 5 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
9 epel 4270 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
10 epel 4270 . . . . . 6 (𝑦 E 𝑧𝑦𝑧)
119, 10anbi12i 456 . . . . 5 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
12 epel 4270 . . . . 5 (𝑥 E 𝑧𝑥𝑧)
138, 11, 123imtr4g 204 . . . 4 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
146, 13syl 14 . . 3 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1514ralrimivvva 2549 . 2 (( E We 𝐴𝐵𝐴) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
16 zfregfr 4551 . . 3 E Fr 𝐵
17 df-wetr 4312 . . 3 ( E We 𝐵 ↔ ( E Fr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1816, 17mpbiran 930 . 2 ( E We 𝐵 ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1915, 18sylibr 133 1 (( E We 𝐴𝐵𝐴) → E We 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wcel 2136  wral 2444  wss 3116   class class class wbr 3982   E cep 4265   Fr wfr 4306   We wwe 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-eprel 4267  df-frfor 4309  df-frind 4310  df-wetr 4312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator