ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wessep GIF version

Theorem wessep 4430
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
wessep (( E We 𝐴𝐵𝐴) → E We 𝐵)

Proof of Theorem wessep
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3041 . . . . . . 7 (𝐵𝐴 → (𝑥𝐵𝑥𝐴))
2 ssel 3041 . . . . . . 7 (𝐵𝐴 → (𝑦𝐵𝑦𝐴))
3 ssel 3041 . . . . . . 7 (𝐵𝐴 → (𝑧𝐵𝑧𝐴))
41, 2, 33anim123d 1265 . . . . . 6 (𝐵𝐴 → ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝐴𝑦𝐴𝑧𝐴)))
54adantl 273 . . . . 5 (( E We 𝐴𝐵𝐴) → ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥𝐴𝑦𝐴𝑧𝐴)))
65imdistani 437 . . . 4 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)))
7 wetrep 4220 . . . . . 6 (( E We 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
87adantlr 464 . . . . 5 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
9 epel 4152 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
10 epel 4152 . . . . . 6 (𝑦 E 𝑧𝑦𝑧)
119, 10anbi12i 451 . . . . 5 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
12 epel 4152 . . . . 5 (𝑥 E 𝑧𝑥𝑧)
138, 11, 123imtr4g 204 . . . 4 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
146, 13syl 14 . . 3 ((( E We 𝐴𝐵𝐴) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1514ralrimivvva 2474 . 2 (( E We 𝐴𝐵𝐴) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
16 zfregfr 4426 . . 3 E Fr 𝐵
17 df-wetr 4194 . . 3 ( E We 𝐵 ↔ ( E Fr 𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
1816, 17mpbiran 892 . 2 ( E We 𝐵 ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1915, 18sylibr 133 1 (( E We 𝐴𝐵𝐴) → E We 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930  wcel 1448  wral 2375  wss 3021   class class class wbr 3875   E cep 4147   Fr wfr 4188   We wwe 4190
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-eprel 4149  df-frfor 4191  df-frind 4192  df-wetr 4194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator