| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfdif2 | GIF version | ||
| Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| dfdif2 | ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dif 3167 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | |
| 2 | df-rab 2492 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | |
| 3 | 1, 2 | eqtr4i 2228 | 1 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 {crab 2487 ∖ cdif 3162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-rab 2492 df-dif 3167 |
| This theorem is referenced by: dfdif3 3282 difeq1 3283 difeq2 3284 nfdif 3293 difidALT 3529 |
| Copyright terms: Public domain | W3C validator |