ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdif2 GIF version

Theorem dfdif2 3173
Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfdif2 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfdif2
StepHypRef Expression
1 df-dif 3167 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
2 df-rab 2492 . 2 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
31, 2eqtr4i 2228 1 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1372  wcel 2175  {cab 2190  {crab 2487  cdif 3162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-rab 2492  df-dif 3167
This theorem is referenced by:  dfdif3  3282  difeq1  3283  difeq2  3284  nfdif  3293  difidALT  3529
  Copyright terms: Public domain W3C validator