Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-rab | GIF version |
Description: Define a restricted class abstraction (class builder), which is the class of all 𝑥 in 𝐴 such that 𝜑 is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-rab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crab 2452 | . 2 class {𝑥 ∈ 𝐴 ∣ 𝜑} |
5 | 2 | cv 1347 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2141 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 103 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cab 2156 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
9 | 4, 8 | wceq 1348 | 1 wff {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Colors of variables: wff set class |
This definition is referenced by: rabid 2645 rabid2 2646 rabbi 2647 rabswap 2648 nfrab1 2649 nfrabxy 2650 rabbiia 2715 rabbidva2 2717 rabeqf 2720 cbvrab 2728 rabab 2751 elrabi 2883 elrabf 2884 elrab3t 2885 ralrab2 2895 rexrab2 2897 cbvrabcsf 3114 dfin5 3128 dfdif2 3129 ss2rab 3223 rabss 3224 ssrab 3225 rabss2 3230 ssrab2 3232 rabssab 3235 notab 3397 unrab 3398 inrab 3399 inrab2 3400 difrab 3401 dfrab2 3402 dfrab3 3403 notrab 3404 rabun2 3406 dfnul3 3417 rabn0r 3441 rabn0m 3442 rab0 3443 rabeq0 3444 dfif6 3528 rabsn 3650 reusn 3654 rabsneu 3656 elunirab 3809 elintrab 3843 ssintrab 3854 iunrab 3920 iinrabm 3935 intexrabim 4139 repizf2 4148 exss 4212 rabxp 4648 exse2 4985 mptpreima 5104 fndmin 5603 fncnvima2 5617 riotauni 5815 riotacl2 5822 snriota 5838 xp2 6152 unielxp 6153 dfopab2 6168 unfiexmid 6895 nnzrab 9236 nn0zrab 9237 shftlem 10780 shftuz 10781 shftdm 10786 negfi 11191 cnblcld 13329 if0ab 13840 bdcrab 13887 |
Copyright terms: Public domain | W3C validator |