Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-rab | GIF version |
Description: Define a restricted class abstraction (class builder), which is the class of all 𝑥 in 𝐴 such that 𝜑 is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-rab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crab 2448 | . 2 class {𝑥 ∈ 𝐴 ∣ 𝜑} |
5 | 2 | cv 1342 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2136 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 103 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cab 2151 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
9 | 4, 8 | wceq 1343 | 1 wff {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Colors of variables: wff set class |
This definition is referenced by: rabid 2641 rabid2 2642 rabbi 2643 rabswap 2644 nfrab1 2645 nfrabxy 2646 rabbiia 2711 rabbidva2 2713 rabeqf 2716 cbvrab 2724 rabab 2747 elrabi 2879 elrabf 2880 elrab3t 2881 ralrab2 2891 rexrab2 2893 cbvrabcsf 3110 dfin5 3123 dfdif2 3124 ss2rab 3218 rabss 3219 ssrab 3220 rabss2 3225 ssrab2 3227 rabssab 3230 notab 3392 unrab 3393 inrab 3394 inrab2 3395 difrab 3396 dfrab2 3397 dfrab3 3398 notrab 3399 rabun2 3401 dfnul3 3412 rabn0r 3435 rabn0m 3436 rab0 3437 rabeq0 3438 dfif6 3522 rabsn 3643 reusn 3647 rabsneu 3649 elunirab 3802 elintrab 3836 ssintrab 3847 iunrab 3913 iinrabm 3928 intexrabim 4132 repizf2 4141 exss 4205 rabxp 4641 exse2 4978 mptpreima 5097 fndmin 5592 fncnvima2 5606 riotauni 5804 riotacl2 5811 snriota 5827 xp2 6141 unielxp 6142 dfopab2 6157 unfiexmid 6883 nnzrab 9215 nn0zrab 9216 shftlem 10758 shftuz 10759 shftdm 10764 negfi 11169 cnblcld 13175 if0ab 13687 bdcrab 13734 |
Copyright terms: Public domain | W3C validator |