| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rab | GIF version | ||
| Description: Define a restricted class abstraction (class builder), which is the class of all 𝑥 in 𝐴 such that 𝜑 is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-rab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crab 2492 | . 2 class {𝑥 ∈ 𝐴 ∣ 𝜑} |
| 5 | 2 | cv 1374 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2180 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cab 2195 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 9 | 4, 8 | wceq 1375 | 1 wff {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Colors of variables: wff set class |
| This definition is referenced by: rabid 2687 rabid2 2688 rabbi 2689 rabswap 2690 nfrab1 2691 nfrabw 2692 rabbiia 2764 rabbidva2 2766 rabeqf 2769 cbvrab 2777 rabab 2801 elrabi 2936 elrabf 2937 elrab3t 2938 ralrab2 2948 rexrab2 2950 cbvrabcsf 3170 dfin5 3184 dfdif2 3185 ss2rab 3280 rabss 3281 ssrab 3282 rabss2 3287 ssrab2 3289 rabssab 3292 notab 3454 unrab 3455 inrab 3456 inrab2 3457 difrab 3458 dfrab2 3459 dfrab3 3460 notrab 3461 rabun2 3463 dfnul3 3474 rabn0r 3498 rabn0m 3499 rab0 3500 rabeq0 3501 dfif6 3584 rabsn 3713 reusn 3717 rabsneu 3719 elunirab 3880 elintrab 3914 ssintrab 3925 iunrab 3992 iinrabm 4007 intexrabim 4216 repizf2 4225 exss 4292 rabxp 4733 exse2 5078 mptpreima 5198 fndmin 5715 fncnvima2 5729 riotauni 5934 riotacl2 5942 snriota 5959 xp2 6289 unielxp 6290 dfopab2 6305 unfiexmid 7048 nnzrab 9438 nn0zrab 9439 wrdnval 11068 shftlem 11293 shftuz 11294 shftdm 11299 negfi 11705 eqglact 13728 dfrhm2 14083 cnblcld 15174 2lgslem1b 15733 if0ab 16079 bdcrab 16125 |
| Copyright terms: Public domain | W3C validator |