| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rab | GIF version | ||
| Description: Define a restricted class abstraction (class builder), which is the class of all 𝑥 in 𝐴 such that 𝜑 is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-rab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crab 2479 | . 2 class {𝑥 ∈ 𝐴 ∣ 𝜑} |
| 5 | 2 | cv 1363 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cab 2182 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 9 | 4, 8 | wceq 1364 | 1 wff {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Colors of variables: wff set class |
| This definition is referenced by: rabid 2673 rabid2 2674 rabbi 2675 rabswap 2676 nfrab1 2677 nfrabw 2678 rabbiia 2748 rabbidva2 2750 rabeqf 2753 cbvrab 2761 rabab 2784 elrabi 2917 elrabf 2918 elrab3t 2919 ralrab2 2929 rexrab2 2931 cbvrabcsf 3150 dfin5 3164 dfdif2 3165 ss2rab 3260 rabss 3261 ssrab 3262 rabss2 3267 ssrab2 3269 rabssab 3272 notab 3434 unrab 3435 inrab 3436 inrab2 3437 difrab 3438 dfrab2 3439 dfrab3 3440 notrab 3441 rabun2 3443 dfnul3 3454 rabn0r 3478 rabn0m 3479 rab0 3480 rabeq0 3481 dfif6 3564 rabsn 3690 reusn 3694 rabsneu 3696 elunirab 3853 elintrab 3887 ssintrab 3898 iunrab 3965 iinrabm 3980 intexrabim 4187 repizf2 4196 exss 4261 rabxp 4701 exse2 5044 mptpreima 5164 fndmin 5672 fncnvima2 5686 riotauni 5887 riotacl2 5894 snriota 5910 xp2 6240 unielxp 6241 dfopab2 6256 unfiexmid 6988 nnzrab 9367 nn0zrab 9368 wrdnval 10982 shftlem 10998 shftuz 10999 shftdm 11004 negfi 11410 eqglact 13431 dfrhm2 13786 cnblcld 14855 2lgslem1b 15414 if0ab 15535 bdcrab 15582 |
| Copyright terms: Public domain | W3C validator |