| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rab | GIF version | ||
| Description: Define a restricted class abstraction (class builder), which is the class of all 𝑥 in 𝐴 such that 𝜑 is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-rab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crab 2489 | . 2 class {𝑥 ∈ 𝐴 ∣ 𝜑} |
| 5 | 2 | cv 1372 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2177 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cab 2192 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 9 | 4, 8 | wceq 1373 | 1 wff {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Colors of variables: wff set class |
| This definition is referenced by: rabid 2683 rabid2 2684 rabbi 2685 rabswap 2686 nfrab1 2687 nfrabw 2688 rabbiia 2758 rabbidva2 2760 rabeqf 2763 cbvrab 2771 rabab 2794 elrabi 2927 elrabf 2928 elrab3t 2929 ralrab2 2939 rexrab2 2941 cbvrabcsf 3160 dfin5 3174 dfdif2 3175 ss2rab 3270 rabss 3271 ssrab 3272 rabss2 3277 ssrab2 3279 rabssab 3282 notab 3444 unrab 3445 inrab 3446 inrab2 3447 difrab 3448 dfrab2 3449 dfrab3 3450 notrab 3451 rabun2 3453 dfnul3 3464 rabn0r 3488 rabn0m 3489 rab0 3490 rabeq0 3491 dfif6 3574 rabsn 3701 reusn 3705 rabsneu 3707 elunirab 3865 elintrab 3899 ssintrab 3910 iunrab 3977 iinrabm 3992 intexrabim 4201 repizf2 4210 exss 4275 rabxp 4716 exse2 5061 mptpreima 5181 fndmin 5694 fncnvima2 5708 riotauni 5913 riotacl2 5920 snriota 5936 xp2 6266 unielxp 6267 dfopab2 6282 unfiexmid 7022 nnzrab 9403 nn0zrab 9404 wrdnval 11031 shftlem 11171 shftuz 11172 shftdm 11177 negfi 11583 eqglact 13605 dfrhm2 13960 cnblcld 15051 2lgslem1b 15610 if0ab 15815 bdcrab 15862 |
| Copyright terms: Public domain | W3C validator |