![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-rab | GIF version |
Description: Define a restricted class abstraction (class builder), which is the class of all 𝑥 in 𝐴 such that 𝜑 is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-rab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crab 2457 | . 2 class {𝑥 ∈ 𝐴 ∣ 𝜑} |
5 | 2 | cv 1352 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2146 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cab 2161 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
9 | 4, 8 | wceq 1353 | 1 wff {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Colors of variables: wff set class |
This definition is referenced by: rabid 2650 rabid2 2651 rabbi 2652 rabswap 2653 nfrab1 2654 nfrabxy 2655 rabbiia 2720 rabbidva2 2722 rabeqf 2725 cbvrab 2733 rabab 2756 elrabi 2888 elrabf 2889 elrab3t 2890 ralrab2 2900 rexrab2 2902 cbvrabcsf 3120 dfin5 3134 dfdif2 3135 ss2rab 3229 rabss 3230 ssrab 3231 rabss2 3236 ssrab2 3238 rabssab 3241 notab 3403 unrab 3404 inrab 3405 inrab2 3406 difrab 3407 dfrab2 3408 dfrab3 3409 notrab 3410 rabun2 3412 dfnul3 3423 rabn0r 3447 rabn0m 3448 rab0 3449 rabeq0 3450 dfif6 3534 rabsn 3656 reusn 3660 rabsneu 3662 elunirab 3818 elintrab 3852 ssintrab 3863 iunrab 3929 iinrabm 3944 intexrabim 4148 repizf2 4157 exss 4221 rabxp 4657 exse2 4995 mptpreima 5114 fndmin 5615 fncnvima2 5629 riotauni 5827 riotacl2 5834 snriota 5850 xp2 6164 unielxp 6165 dfopab2 6180 unfiexmid 6907 nnzrab 9248 nn0zrab 9249 shftlem 10791 shftuz 10792 shftdm 10797 negfi 11202 cnblcld 13586 if0ab 14097 bdcrab 14144 |
Copyright terms: Public domain | W3C validator |