![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-rab | GIF version |
Description: Define a restricted class abstraction (class builder), which is the class of all 𝑥 in 𝐴 such that 𝜑 is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-rab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | crab 2476 | . 2 class {𝑥 ∈ 𝐴 ∣ 𝜑} |
5 | 2 | cv 1363 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2164 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | cab 2179 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
9 | 4, 8 | wceq 1364 | 1 wff {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
Colors of variables: wff set class |
This definition is referenced by: rabid 2670 rabid2 2671 rabbi 2672 rabswap 2673 nfrab1 2674 nfrabw 2675 rabbiia 2745 rabbidva2 2747 rabeqf 2750 cbvrab 2758 rabab 2781 elrabi 2914 elrabf 2915 elrab3t 2916 ralrab2 2926 rexrab2 2928 cbvrabcsf 3147 dfin5 3161 dfdif2 3162 ss2rab 3256 rabss 3257 ssrab 3258 rabss2 3263 ssrab2 3265 rabssab 3268 notab 3430 unrab 3431 inrab 3432 inrab2 3433 difrab 3434 dfrab2 3435 dfrab3 3436 notrab 3437 rabun2 3439 dfnul3 3450 rabn0r 3474 rabn0m 3475 rab0 3476 rabeq0 3477 dfif6 3560 rabsn 3686 reusn 3690 rabsneu 3692 elunirab 3849 elintrab 3883 ssintrab 3894 iunrab 3961 iinrabm 3976 intexrabim 4183 repizf2 4192 exss 4257 rabxp 4697 exse2 5040 mptpreima 5160 fndmin 5666 fncnvima2 5680 riotauni 5881 riotacl2 5888 snriota 5904 xp2 6228 unielxp 6229 dfopab2 6244 unfiexmid 6976 nnzrab 9344 nn0zrab 9345 wrdnval 10947 shftlem 10963 shftuz 10964 shftdm 10969 negfi 11374 eqglact 13298 dfrhm2 13653 cnblcld 14714 2lgslem1b 15246 if0ab 15367 bdcrab 15414 |
Copyright terms: Public domain | W3C validator |