| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rab | GIF version | ||
| Description: Define a restricted class abstraction (class builder), which is the class of all 𝑥 in 𝐴 such that 𝜑 is true. Definition of [TakeutiZaring] p. 20. (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-rab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | crab 2512 | . 2 class {𝑥 ∈ 𝐴 ∣ 𝜑} |
| 5 | 2 | cv 1394 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2200 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | cab 2215 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 9 | 4, 8 | wceq 1395 | 1 wff {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| Colors of variables: wff set class |
| This definition is referenced by: rabid 2707 rabid2 2708 rabbi 2709 rabswap 2710 nfrab1 2711 nfrabw 2712 rabbiia 2784 rabbidva2 2786 rabeqf 2789 cbvrab 2797 rabab 2821 elrabi 2956 elrabf 2957 elrab3t 2958 ralrab2 2968 rexrab2 2970 cbvrabcsf 3190 dfin5 3204 dfdif2 3205 ss2rab 3300 rabss 3301 ssrab 3302 rabss2 3307 ssrab2 3309 rabssab 3312 notab 3474 unrab 3475 inrab 3476 inrab2 3477 difrab 3478 dfrab2 3479 dfrab3 3480 notrab 3481 rabun2 3483 dfnul3 3494 rabn0r 3518 rabn0m 3519 rab0 3520 rabeq0 3521 dfif6 3604 rabsn 3733 reusn 3737 rabsneu 3739 elunirab 3901 elintrab 3935 ssintrab 3946 iunrab 4013 iinrabm 4028 intexrabim 4237 repizf2 4246 exss 4313 rabxp 4756 exse2 5102 mptpreima 5222 fndmin 5744 fncnvima2 5758 riotauni 5967 riotacl2 5975 snriota 5992 xp2 6325 unielxp 6326 dfopab2 6341 unfiexmid 7088 nnzrab 9478 nn0zrab 9479 wrdnval 11110 shftlem 11335 shftuz 11336 shftdm 11341 negfi 11747 eqglact 13770 dfrhm2 14126 cnblcld 15217 2lgslem1b 15776 if0ab 16193 bdcrab 16239 |
| Copyright terms: Public domain | W3C validator |