| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldif | GIF version | ||
| Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldif | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2783 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 4 | eleq1 2268 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2268 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 6 | 5 | notbid 669 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶)) |
| 7 | 4, 6 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
| 8 | df-dif 3168 | . . 3 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)} | |
| 9 | 7, 8 | elab2g 2920 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
| 10 | 1, 3, 9 | pm5.21nii 706 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∖ cdif 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 |
| This theorem is referenced by: eldifd 3176 eldifad 3177 eldifbd 3178 difeqri 3293 eldifi 3295 eldifn 3296 difdif 3298 ddifstab 3305 ssconb 3306 sscon 3307 ssdif 3308 raldifb 3313 dfss4st 3406 ssddif 3407 unssdif 3408 inssdif 3409 difin 3410 unssin 3412 inssun 3413 invdif 3415 indif 3416 difundi 3425 difindiss 3427 indifdir 3429 undif3ss 3434 difin2 3435 symdifxor 3439 dfnul2 3462 reldisj 3512 disj3 3513 undif4 3523 ssdif0im 3525 inssdif0im 3528 ssundifim 3544 eldifpr 3660 eldiftp 3679 eldifsn 3760 difprsnss 3771 iundif2ss 3993 iindif2m 3995 brdif 4097 unidif0 4211 eldifpw 4524 elirr 4589 en2lp 4602 difopab 4811 intirr 5069 cnvdif 5089 imadiflem 5353 imadif 5354 elfi2 7074 xrlenlt 8137 nzadd 9425 irradd 9767 irrmul 9768 fzdifsuc 10203 fisumss 11703 prodssdc 11900 fprodssdc 11901 bitscmp 12269 inffinp1 12800 bj-charfunr 15746 |
| Copyright terms: Public domain | W3C validator |