| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldif | GIF version | ||
| Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldif | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2811 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 4 | eleq1 2292 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2292 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 6 | 5 | notbid 671 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶)) |
| 7 | 4, 6 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
| 8 | df-dif 3199 | . . 3 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)} | |
| 9 | 7, 8 | elab2g 2950 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
| 10 | 1, 3, 9 | pm5.21nii 709 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 |
| This theorem is referenced by: eldifd 3207 eldifad 3208 eldifbd 3209 difeqri 3324 eldifi 3326 eldifn 3327 difdif 3329 ddifstab 3336 ssconb 3337 sscon 3338 ssdif 3339 raldifb 3344 dfss4st 3437 ssddif 3438 unssdif 3439 inssdif 3440 difin 3441 unssin 3443 inssun 3444 invdif 3446 indif 3447 difundi 3456 difindiss 3458 indifdir 3460 undif3ss 3465 difin2 3466 symdifxor 3470 dfnul2 3493 reldisj 3543 disj3 3544 undif4 3554 ssdif0im 3556 inssdif0im 3559 ssundifim 3575 eldifpr 3693 eldiftp 3712 eldifsn 3794 difprsnss 3805 iundif2ss 4030 iindif2m 4032 brdif 4136 unidif0 4250 eldifpw 4567 elirr 4632 en2lp 4645 difopab 4854 intirr 5114 cnvdif 5134 imadiflem 5399 imadif 5400 elfi2 7135 xrlenlt 8207 nzadd 9495 irradd 9837 irrmul 9838 fzdifsuc 10273 fisumss 11898 prodssdc 12095 fprodssdc 12096 bitscmp 12464 inffinp1 12995 bj-charfunr 16131 |
| Copyright terms: Public domain | W3C validator |