| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldif | GIF version | ||
| Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldif | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2782 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 4 | eleq1 2267 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2267 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 6 | 5 | notbid 668 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶)) |
| 7 | 4, 6 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
| 8 | df-dif 3167 | . . 3 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)} | |
| 9 | 7, 8 | elab2g 2919 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
| 10 | 1, 3, 9 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∖ cdif 3162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 |
| This theorem is referenced by: eldifd 3175 eldifad 3176 eldifbd 3177 difeqri 3292 eldifi 3294 eldifn 3295 difdif 3297 ddifstab 3304 ssconb 3305 sscon 3306 ssdif 3307 raldifb 3312 dfss4st 3405 ssddif 3406 unssdif 3407 inssdif 3408 difin 3409 unssin 3411 inssun 3412 invdif 3414 indif 3415 difundi 3424 difindiss 3426 indifdir 3428 undif3ss 3433 difin2 3434 symdifxor 3438 dfnul2 3461 reldisj 3511 disj3 3512 undif4 3522 ssdif0im 3524 inssdif0im 3527 ssundifim 3543 eldifpr 3659 eldiftp 3678 eldifsn 3759 difprsnss 3770 iundif2ss 3992 iindif2m 3994 brdif 4096 unidif0 4210 eldifpw 4523 elirr 4588 en2lp 4601 difopab 4810 intirr 5068 cnvdif 5088 imadiflem 5352 imadif 5353 elfi2 7073 xrlenlt 8136 nzadd 9424 irradd 9766 irrmul 9767 fzdifsuc 10202 fisumss 11674 prodssdc 11871 fprodssdc 11872 bitscmp 12240 inffinp1 12771 bj-charfunr 15708 |
| Copyright terms: Public domain | W3C validator |