![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldif | GIF version |
Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
eldif | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2750 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ V) | |
2 | elex 2750 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
4 | eleq1 2240 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | eleq1 2240 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
6 | 5 | notbid 667 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶)) |
7 | 4, 6 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
8 | df-dif 3133 | . . 3 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)} | |
9 | 7, 8 | elab2g 2886 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
10 | 1, 3, 9 | pm5.21nii 704 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∖ cdif 3128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 |
This theorem is referenced by: eldifd 3141 eldifad 3142 eldifbd 3143 difeqri 3257 eldifi 3259 eldifn 3260 difdif 3262 ddifstab 3269 ssconb 3270 sscon 3271 ssdif 3272 raldifb 3277 dfss4st 3370 ssddif 3371 unssdif 3372 inssdif 3373 difin 3374 unssin 3376 inssun 3377 invdif 3379 indif 3380 difundi 3389 difindiss 3391 indifdir 3393 undif3ss 3398 difin2 3399 symdifxor 3403 dfnul2 3426 reldisj 3476 disj3 3477 undif4 3487 ssdif0im 3489 inssdif0im 3492 ssundifim 3508 eldifpr 3621 eldiftp 3640 eldifsn 3721 difprsnss 3732 iundif2ss 3954 iindif2m 3956 brdif 4058 unidif0 4169 eldifpw 4479 elirr 4542 en2lp 4555 difopab 4762 intirr 5017 cnvdif 5037 imadiflem 5297 imadif 5298 elfi2 6973 xrlenlt 8024 nzadd 9307 irradd 9648 irrmul 9649 fzdifsuc 10083 fisumss 11402 prodssdc 11599 fprodssdc 11600 inffinp1 12432 bj-charfunr 14647 |
Copyright terms: Public domain | W3C validator |