| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldif | GIF version | ||
| Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldif | ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2788 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 4 | eleq1 2270 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2270 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 6 | 5 | notbid 669 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝐶 ↔ ¬ 𝐴 ∈ 𝐶)) |
| 7 | 4, 6 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
| 8 | df-dif 3176 | . . 3 ⊢ (𝐵 ∖ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)} | |
| 9 | 7, 8 | elab2g 2927 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶))) |
| 10 | 1, 3, 9 | pm5.21nii 706 | 1 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∖ cdif 3171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 |
| This theorem is referenced by: eldifd 3184 eldifad 3185 eldifbd 3186 difeqri 3301 eldifi 3303 eldifn 3304 difdif 3306 ddifstab 3313 ssconb 3314 sscon 3315 ssdif 3316 raldifb 3321 dfss4st 3414 ssddif 3415 unssdif 3416 inssdif 3417 difin 3418 unssin 3420 inssun 3421 invdif 3423 indif 3424 difundi 3433 difindiss 3435 indifdir 3437 undif3ss 3442 difin2 3443 symdifxor 3447 dfnul2 3470 reldisj 3520 disj3 3521 undif4 3531 ssdif0im 3533 inssdif0im 3536 ssundifim 3552 eldifpr 3670 eldiftp 3689 eldifsn 3771 difprsnss 3782 iundif2ss 4007 iindif2m 4009 brdif 4113 unidif0 4227 eldifpw 4542 elirr 4607 en2lp 4620 difopab 4829 intirr 5088 cnvdif 5108 imadiflem 5372 imadif 5373 elfi2 7100 xrlenlt 8172 nzadd 9460 irradd 9802 irrmul 9803 fzdifsuc 10238 fisumss 11818 prodssdc 12015 fprodssdc 12016 bitscmp 12384 inffinp1 12915 bj-charfunr 15945 |
| Copyright terms: Public domain | W3C validator |