ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2 GIF version

Theorem difeq2 3284
Description: Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difeq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem difeq2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2268 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21notbid 668 . . 3 (𝐴 = 𝐵 → (¬ 𝑥𝐴 ↔ ¬ 𝑥𝐵))
32rabbidv 2760 . 2 (𝐴 = 𝐵 → {𝑥𝐶 ∣ ¬ 𝑥𝐴} = {𝑥𝐶 ∣ ¬ 𝑥𝐵})
4 dfdif2 3173 . 2 (𝐶𝐴) = {𝑥𝐶 ∣ ¬ 𝑥𝐴}
5 dfdif2 3173 . 2 (𝐶𝐵) = {𝑥𝐶 ∣ ¬ 𝑥𝐵}
63, 4, 53eqtr4g 2262 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1372  wcel 2175  {crab 2487  cdif 3162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-ral 2488  df-rab 2492  df-dif 3167
This theorem is referenced by:  difeq12  3285  difeq2i  3287  difeq2d  3290  disjdif2  3538  ssdifeq0  3542  2oconcl  6524  diffitest  6983  diffifi  6990  undifdc  7020  sbthlem2  7059  isbth  7068  difinfinf  7202  ismkvnex  7256  iscld  14517
  Copyright terms: Public domain W3C validator